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C H A P T E R

How would you calculate the

charge on the surface of Earth?

(See Example 22-15.)
?

727

LIGHTNING IS AN ELECTRIC
PHENOMENA. DURING A LIGHTNING
STRIKE, CHARGES ARE TRANSFERRED
BETWEEN THE CLOUDS AND THE
GROUND. THE VISIBLE LIGHT GIVEN OFF
COMES FROM AIR MOLECULES
RETURNING TO LOWER ENERGY STATES.
(Photo Disc.)

The Electric Field II:
Continuous Charge
Distributions

22.1 Calculating from Coulomb’s Law

22.2 Gauss’s Law

22.3 Using Symmetry to Calculate with Gauss’s Law

22.4 Discontinuity of En

22.5 Charge and Field at Conductor Surfaces

22.6 The Equivalence of Gauss’s Law and Coulomb’s Law in

Electrostatics

O
n a microscopic scale, charge is quantized. However, there are often situa-
tions in which many charges are so close together that the charge can be
thought of as continuously distributed. We apply the concept of density to
charge similarly to the way we use it to describe matter. 

In addition to continuous charge distributions, we examine the impor-
tance of symmetry within the electric field. The mathematical findings of

Carl Friedrich Gauss show that every electric field maintains symmetric proper-
ties. It is an understanding of charge distribution and symmetry within the electric
field that aids scientists in a vast array of fields.

In this chapter, we show how Coulomb’s law is used to calculate the electric
field produced by various types of continuous charge distributions. We then
introduce Gauss’s law and use it to calculate the electric fields produced by
charge distributions that have certain symmetries.

E
S

E
S

* 
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The component of is
where is the angle

between and .* The and 
components of are calculated in
like manner.  

rn
zyinrn

urn # in � cos u,
rnx!
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P

r r̂
k dq

r2
dE =

dq =    dVρ

22-1 CALCULATING FROM COULOMB’S LAW

Figure 22-1 shows an element of charge that is small enough to be con-
sidered a point charge. The element of charge is the amount of charge in volume
element and is the charge per unit volume. Coulomb’s law states that the elec-
tric field at a field point due to this element of charge is

22-1a

where is a unit vector directed away from the charge element and toward
point and (the component of in the direction of ) is given by 

The total field at is calculated by integrating this expression over the entire
charge distribution. That is,

22-1b

ELECTRIC FIELD DUE TO A CONTINUOUS CHARGE DISTRIBUTION

The use of a continuous charge density to describe a large number of discrete
charges is similar to the use of a continuous mass density to describe air, which ac-
tually consists of a large number of discrete atoms and molecules. In both cases, it
is usually easy to find a volume element that is large enough to contain a mul-
titude of individual charge carriers and yet is small enough that replacing with
a differential and using calculus introduces negligible error. If the charge is dis-
tributed over a surface or along a line, we use or and inte-
grate over the surface or line. (In these cases and are the charge per unit area
and charge per unit length, respectively.) The integration usually is done by ex-
pressing in terms of its Cartesian components, and then integrating one compo-
nent at a time.

PROBLEM-SOLVING STRATEGY

Calculating Using Equations 22-1a and 22-1b

PICTURE Sketch the charge configuration along with a field point (the
point where is to be calculated). In addition, the sketch should include an
increment of charge at an arbitrary source point 

SOLVE

1. Add coordinate axes to the sketch. The choice of axes should exploit any
symmetry of the charge configuration. For example, if the charge is along
a straight line, then select that line as one of the coordinate axes. Draw a
second axis that passes through the field point In addition, include the
coordinates of both and the distance between and and the unit
vector directed away from toward 

2. To compute the electric field using Equation 22-1b, we express 
in component form. The component of is ,
where is the angle between and (see Figure 22-2), and the component
of is dEy � dEr rn # jn � dEr sin u.dE

S

yinrnu

dEx � dEr rn # in � dEr cos udE
S

x
dE

S

� dEr rnE
S

P.Srn
S,PrS,P

P.

S.dq
E
S

P

E
S

rn

ls

dq � l dLdq � s dA
dV

¢V
¢V

E
S

� � dE
S

� �  
krn
r2  dq

PE
S

k dq>r2.rndE
S

dErP,
dqrn

dE
S

� dEr rn �
k dq

r2  rn

PdE
S

rdV
dq

dq � r dV

E
S

* The componet of a vector in a given direction is equal to the scalar product of the vector with the unit vector in the
given direction. Scalar products are discussed in Section 6-3.

F I G U R E  2 2 - 1 An element of charge 
produces a field at point

The field at is calculated by integrating
Equation 22-1a over the entire charge
distribution.

PP.
dE

S

� (k dq>r2)rn
dq
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F I G U R E  2 2 - 2 Geometry for the
calculation of the electric field at field
point due to a uniformly charged rod.P

Calculating from Coulomb’s Law S E C T I O N  2 2 - 1 | 729E
S

2. Find expressions for and in
terms of and where is the component of

in the direction away from toward :PSdE
S

dEru,dEr

dEydExE
S

� Ex in � Ey jn.

so

dEy � dEr rn # jn � dEr sin u

 dEx � dEr rn # in � dEr cos u

 dE
S

� dEr rn

3. First we solve for Express using Equation
21-1a, where is the distance from the source
point to the field point We see (Figure 22-2)
that In addition, use
dq � l dxS :

cos u � ƒxS ƒ>r � �xS>r.
P.S

r

dErEx . and 

so

dEx �
k dq

r2  cos u �
k cos u l dxS

r2

cos u �
�xS

r
dEr �

k dq

r2

A thin rod of length and charge is uniformly charged, so it has a linear charge 
density Find the electric field at point where is an arbitrarily positioned 
point.

PICTURE Choose the axis so the rod is on the axis between points and and
choose the axis to be through the field point Let be the radial distance of from 
the axis. To calculate the electric field at we separately calculate and 
Using Equations 22-1, first find the field increment at due to an arbitrary increment

of the charge distribution. Then integrate each component of over the entire 
charge distribution. (Because is distributed uniformly, the linear charge density 
equals )

SOLVE

1. Sketch the charge configuration and the field point Include the and axes with
the axis lying along the line of charge and the axis passing through In addition,
sketch an arbitrary increment of the line charge at point (at ) that has a
length and a charge and the electric field at due to . Sketch the electric
field vector as if is positive (Figure 22-2):dqdE

S

dqPdq,dxS

x � xSS
P.yx

yxP.

Q>L.
lQ

dE
S

dq
PdE

S

Ey .ExP,E
S

x
PyPP.y
x2 ,x1xx

PP,l � Q>L.
QL

3. Express in Equation 22-1b in terms of its and components:

4. To calculate express as or or (whichever is
appropriate) and integrate. To calculate follow a procedure similar to
that used for calculating 

5. Symmetry arguments are sometimes used to show that one or more
components of are equal to zero. (For example, a symmetry argument
is used to show in Example 22-5.)

CHECK If the charge distribution is confined to a finite region of space at
points far from the charge distribution, the expression for the electric field
will approach that of a point charge located at the center of charge. (If the
charge configuration is sufficiently symmetric then the location of the center
of charge can be obtained by inspection.)

Ey � 0
E
S

Ex .
Ey ,

l dLs dAr dVdqEx ,

 Ey � � dEy � � dEr sin u � �  

k dq

r2  sin u

 Ex � � dEx � � dEr cos u � �  

k dq

r2  cos u

yxE
S

Example 22-1 Electric Field Due to a Line Charge of Finite Length

4. Integrate the step-3 result: dEx � �
x

2

x1

 

k cos u l dxS

r2 � kl�
x

2

x1

 

cos u dxS

r2

See 

Math Tutorial for more

information on 

Trigonometry
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Q
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F I G U R E  2 2 - 3 The electric field due to a
uniformly charged thin rod.
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The electric field at point due to a thin uniformly charged rod (see Figure 22-3)
located on the axis is given by where

and 22-2a

22-2b

These equations are derived in Example 22-1. The expressions for (Equation
22-2a) are undefined at the end points of the thin charged rod and the expressions
for (Equation 22-2b) are undefined at all points on the axis (where ).
However, at all points where R � 0.ER � 0

R � 0zER

Ez

(R � 0)ER � � 
kl
R

 (cos u2 � cos u1) � �kla  

cot u2

r2

�
cot u1

r1

b

(r2 � 0)(r1 � 0)Ez �
kl
R

 (sin u2 � sin u1) � kla
1
r2

�
1
r1

b

E
S

� Ez kn � ER Rn ,z
P

5. Next change the integration variable from to 
From Figure 22-2, find the relation between and 
and between and u.r

uxS

u.xS so

so r �
yP

sin u
sin u �

yP

r
,

xS � � 

yP

tan u
� �yP cot u tan u �

yP

ƒxS ƒ

�
yP

�xS

,

6. Differentiate the step 5 result to obtain an expression
for (the field point remains fixed, so is
constant):

yPPdxS

dxS � �yP 
d cot u

du
� yP csc2

 u du

7. Substitute for and for in the
integral in step 4 and simplify:

ryP>sin udxSyP csc2
 u du �

1
yP

 �
u

2

u1

 cos u du  (yP � 0) �
x2

x1

 

cos u dxS

r2 � �
u2

u1

 

cos u yP csc2
 u du

y2
P>sin2

 u

8. Evaluate the integral and solve for Ex :

(r1 � 0 and r2 � 0) � kla
1
r2

�
1
r1

b

�
kl
yP

 a
yP

r2

�
yP

r1

b Ex � kl 
1
yP

 �
u

2

u1

 cos u du �
kl
yP

 (sin u2 � sin u1)

9. can be found using a procedure that parallels the
one in steps 3–7 for finding (to find see Problem
22-21):

Ey ,Ex

Ey

and

(yP � 0)Ey � 0

� �kla
cot u2

r2

�
cot u1

r1

b (yP � 0) Ey � � 
kl
yP

 (cos u2 � cos u1)

10. Combine steps 8 and 9 to obtain and expression for
the electric field at P:

Ex in � Ey jnE
S

�

CHECK Consider the plane that is perpendicular to and bisecting the rod. At points on this
plane, symmetry dictates that points directly away from the center of the rod. That is, we
expect that throughout this plane. At all points on this plane The step-8 result
gives if , as expected.

TAKING IT FURTHER The first expression for in the step 9 result is valid everywhere
in the plane but on the axis. The two cotangent functions in the expression for are
given by

and

and neither of these functions is defined on the axis (where ). The second expression
for in the step-9 result is obtained using Equation 22-1a. By recognizing that on the axis

we can see that Equation 22-1a tells us that which implies 

PRACTICE PROBLEM 22-1 Using the expression for in step 8, show that at all
points on the axis in the region x � x2 .x

Ex � 0Ex

Ey � 0.dE
S

� �dEin,rn � �in,
xEy

yP � 0x

cot u2 �
�x2

yP

cot u1 �
�x1

yP

Eyxxy
Ey

r1 � r2Ex � 0
r1 � r2 .Ex � 0

E
S
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E
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r1
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2

F I G U R E  2 2 - 4 Geometry for the
calculation of the electric field on the axis of
a uniform line charge of length charge 
and linear charge density l � Q>L.

Q,L,

Calculating from Coulomb’s Law S E C T I O N  2 2 - 1 | 731E
S

Example 22-2 of a Finite Line Charge and Far from the ChargeE
S

A charge is uniformly distributed along the axis, from to Show that
for large values of the expression for the electric field of the line charge on the axis ap-
proaches the expression for the electric field of a point charge at the origin.

PICTURE Use Equation 22-2a to show that for large values of the expression for the electric
field of the line charge on the axis approaches that of a point charge at the origin.

SOLVE

Qz
z

Q
zz

z � � 
1
2 L.z � � 

1
2 LzQ

1. The electric field on the axis has only a 
component, given by Equation 22-2a:

zz Ez � kla
1
r2

�
1
r1

b

2. Sketch the line charge. Include the axis, the field point and and (Figure 22-4):r2r1P,z

3. Substitute with and 
into the step 1 result and simplify:

r2 � z � 1
2 Lr1 � z � 1

2 L Az � 1
2 L B �

kQ

z2 � A 12 L B 2
 Ez � kla

1

z � 1
2 L

�
1

z � 1
2 L
b �

kQ

L
 

L

z2 � A 12 L B 2

CHECK The approximate expression (step 4) falls off inversely as the square of the dis-
tance from the origin. This expression is the same as the expression for the electric field of a
point charge located at the origin.

PRACTICE PROBLEM 22-2 The validity of the step 3 result is established for the region
Is the step 3 result also valid in the region Explain

your answer.
�L>2 � z � �L>2 ?L>2 � z � � .

Q

z,

4. Find an approximate expression for for
which is done by neglecting in

comparison with in the step 3 result.z2

(1
2 L)2z W L,

Ez Ez �
kQ

z2 (z W L)

1. Choose the first expression for
the electric field in each of
Equations 22-2a and 22-2b: ER � � 

kl
R

 (cos u2 � cos u1)

Ez �
kl
R

 (sin u2 � sin u1)

2. Take the limit as both and
as u2 S p.

u1 S 0

ER � � 
kl
R

 (cos p � cos 0) � � 
kl
R

 (�1 � 1) � 2 
kl
R

Ez �
kl
R

 (sin p � sin 0) �
kl
R

 (0 � 0) � 0

3. Express the electric field in
vector form:

2kl
R

 RnE
S

� Ez kn � ER Rn � 0kn �
2kl
R

 Rn �

CHECK The electric field is in the radial direction as expected. We expected this due to the
symmetry. (The line charge is uniformly distributed and extends to infinity in both directions.)

TAKING IT FURTHER The magnitude of the electric field decreases inversely with the
radial distance from the line charge.

Example 22-3 Due to an Infinite Line Charge

Find the electric field due to a uniformly charged line that extends to infinity in both directions
and has linear charge density 

PICTURE A line charge is considered infinite if the distances between the ends of the line
charge and the field points of interest are much much greater than the distances between any
of the radial distances of the field points from the line charge. To calculate the electric field
due to such a line charge we take the limit (see Figure 22-2) both as and as 
From the figure, we see that taking the limit as both and as is needed.
See Equations 22-2a and 22-2b for expressions for the electric field.

SOLVE

u2 S pu1 S 0
x2 S ��.x1 S ��

l.

E
S
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Example 22-4 Approximating Equations 22-2a and 22-2b on the Symmetry Plane

A charge is uniformly distributed along the axis, from to (a) Find an
expression for the electric field on the plane as a function of the radial distance of
the field point from the axis. (b) Show that for the expression found in Part (a)
approaches that of a point charge at the origin of charge (c) Show that for the
expression found in Part (a) approaches that of an infinitely long line charge on the axis
with a uniform linear charge density 

PICTURE The charge configuration is the same as that in Example 22-2, and the linear
charge density is Sketch the line charge on the axis and put the field point in the

plane. Then use Equations 22-2a and 22-2b to find the electric field expression for
Part (a). The electric field due to a point charge decreases inversely with the square of the
distance from the charge. Examine the Part (a) result to see how it approaches that of a point
charge at the origin for The electric field due to a uniform line charge of infinite
length decreases inversely with the radial distance from the line (Equation 22-3). Examine
the Part (a) result to see how it approaches the expression for the electric field of a line charge
of infinite length for 

SOLVE

R V L.

R W L.

z � 0
zl � Q>L.

l � Q>L.
z

R V L,Q.
R W L,z

R,z � 0
z � � 

1
2 L.z � � 

1
2 LzQ

(a) 1. Choose the first expression for the
electric field in each of 
Equations 22-2a and 22-2b:  ER � � 

kl
R

 (cos u2 � cos u1)

Ez �
kl
R

 (sin u2 � sin u1)

The electric field due to a uniformly charged line that extends to infinity in both
directions is given by

22-3

where is the linear charge density, is the radial distance from the line charge to
the field point, and is the unit vector in the radial direction. Equation 22-3 is
derived in Example 22-3.

Rn
Rl

E
S

�
2kl
R

 Rn

PRACTICE PROBLEM 22-3

Show that if and are in SI units then Equation 22-3 gives the electric field in
newtons per coulomb.

Rk, l,

It is customary to write the Coulomb constant in terms of another constant, 
called the electric constant (permittivity of free space):

22-4

Using this notation, Coulomb’s law for (Equation 21-7) is written

22-5

and for a uniformly charged infinite line (Equation 22-3) with linear charge
density is written

22-6

The value of in SI units is

22-7P0 �
1

4pk
� 8.85 	 10�12 C2>(N # m2)

P0

E
S

�
1

2pP0

 
l

R
 Rn

l

E
S

E
S

� k 

q

r2  rn �
1

4pP0

 
q

r2  rn

E
S

k �
1

4pP0

P0 ,k
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F I G U R E  2 2 - 5

Calculating from Coulomb’s Law S E C T I O N  2 2 - 1 | 733E
S

2. Sketch the charge configuration with the line charge on the axis from to 
Show the field point in the plane a distance from the origin (Figure 22-5):Rz � 0P

z � � 
1
2 L.z � � 

1
2 Lz

3. From the figure, we see that so
and

Substitute into
the step 1 results:
cos u2 � cos(p � u1) � �cos u1 .
sin u2 � sin(p � u1) � sin u1

u2 � u1 � p,

 ER � � 
kl
R

 (�cos u1 � cos u1) �
2kl
R

 cos u1

 Ez �
kl
R

 (sin u1 � sin u1) � 0

4. Express in terms of and and substitute
into the step-3 result:

LRcos u1

so

ER �
2kl
R

 

1
2L4R2 � A 12 L B 2

�
klL

R4R2 � A 12 L B 2

cos u1 �

1
2 L4R2 � A 12 L B 2

5. Express the electric field in vector form, and
substitute for :lLQ

so
kQ

R4R2 � A 12 L B 2
 RnE

S

� ER Rn �

E
S

� Ez kn � ER Rn � 0kn � ER Rn

CHECK Parts (b) and (c) are themselves plausibility checks for the Part (a) result. They reveal
the validity of the Part (a) result in two limiting cases, and 

TAKING IT FURTHER Figure 22-6 shows
the exact result for a line charge of length

and a linear charge density of
It also shows the limiting

cases of an infinite line charge of the same
charge density and a point charge Q � lL.

l � 4.5 nC>m.
L � 10 cm

R V L.R W L

(b) 1. Examine the step-5 result. If then
Substitute for R2 � (1

2 L)2:R2R2 � (1
2 L)2 � R2.

R W L (R W L)E
S

�
kQ

R3R2
 Rn �

kQ

R2  Rn

2. This (approximate) expression for the electric
field decreases inversely with the square of the
distance from the origin, just as it would for a
point charge at the origin.Q

(c) 1. Examine the Part (a) , step-5 result. If 
then Substitute for

This (approximate) expression for
the electric field falls off inversely with the
radial distance from the line charge, just as the
exact expression for an infinite line charge
(Equation 22-3) would.

R2 � (1
2 L)2.

(1
2 L)2R2 � (1

2 L)2 � (1
2 L)2.

R V L

kQ

R2  Rn (R W L)E
S

�

(R V L)
2kl
R

 RnE
S

�
klL

R4 A 12 L B 2
 Rn �

0 40

3

2

1

0
10 20 30

Line segment

For small R, the field of
the line segment approaches 
that of infinite line.

For large R, the field of
the line segment approaches 
that of the point charge.

Point charge

Infinite line charge

R, cm

/CE, kN

F I G U R E  2 2 - 6 The magnitude of the electric field is plotted versus distance for a 10-cm-long
line charge, a point charge, and an infinite line charge.
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Example 22-5 on the Axis of a Charged Ring

A thin ring (a circle) of radius a is uniformly charged
with total charge Find the electric field due to this
charge at all points on the axis perpendicular to the
plane and through the center of the ring.

PICTURE Starting with (Equation
22-1a), calculate the electric field at an arbitrarily po-
sitioned field point on the axis. Sketch the charged
ring. Choose the axis to coincide with the axis of the
ring with the ring in the plane. Label a field
point somewhere on the axis, and place a source
point on the ring.

SOLVE

S
�zP
z � 0

z

dE
S

� (k dq>r2)rn

Q.

E
S

1. Write the equation (Equation 22-1a)
giving the electric field due to an
element of charge :dq

2. Sketch the ring (Figure 22-7a) and the
axis (the axis), and show the electric
field vector at field point due to an
increment of charge at source point:dq

P
z

4. Express the component of the electric
field from the step-1 result:

z dEz �
k dq

r2  cos u �
k dq

r2  
z
r

�
k dq z

r3

θ

θz

r

P

dE
r

dEz

dER⊥

a

dq

z

Source point

Field point

dE1

dE2

a

a

dE1R⊥

dq2

dq1

dE2R⊥

P dE2z

dE1z
z

(b)

(a)

5. Integrate both sides of the step-4 result.
Factor constant terms from the integral:

Ez � �  

kz dq

r3 �
kz
r3  � dq �

kz
r3  Q

6. Using the Pythagorean theorem gives

r � 2z2 � a2
 :

kQz

(z2 � a2)3>2
 knE

S

� Ez kn � ER Rn � Ez kn � 0 �

CHECK We expect the direction of the electric field at points on the axis to be directed
away from the origin for The step-6 result meets this expectation as is positive on
the axis and negative on the axis. In addition, for we expect to decrease in-
versely as the square of the distance from the
origin. The step-6 result meets this expectation,
giving if is negligibly small rela-
tive to 

PRACTICE PROBLEM 22-4 A plot of versus
along the axis using the step-6 result is shown

in Figure 22-8. Find the point on the axis of
the ring where is maximum. Hint: 
where is maximum.Ez

dEz>dz � 0Ez

z
Ez

z2.
a2Ez � kQ>z2

Ez W a�z�z
zQ � 0.

z

dE
S

�
k dq

r2  rn

3. Sketch the ring (Figure 22-7b) and show
the axial and radial components of 
for identical charge elements on
opposite sides of the ring. The radial
components cancel in pairs, as can be
seen, so the resultant field is axial:

E
S

ER � 0

F I G U R E  2 2 - 7 (a) A ring charge of
radius The electric field at point on the 
axis due to the charge element shown has
one component along the axis and one
perpendicular to the axis. (b) For any
charge element there is an equal charge
element opposite it, and the electric field
components perpendicular to the axis sum
to zero.

z
dq2

dq1

z
z

dq
zPa.

−1−2−3−4 0 1 2 3 4

Ez

z/a

F I G U R E  2 2 - 8
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ConceptualExample 22-6 on the Axis of a Charged Ring

For the charged ring in Example 22-5, why is the magnitude of the electric field small near
the origin, even though the origin is closer to the ring than any other points on the axis (see
Figure 22-9)?

PICTURE The key to solving this problem can be found in Figure 22-7b. Redraw this figure
with the field point on the axis, but near the origin.zP

z

E
S

dE1

dE2

a

a

dq2

dq1

dE1R

dE2R

P dE2z

dE1z
z

F I G U R E  2 2 - 9

SOLVE

1. Redraw Figure 22-7b with the field
point near the origin:P

2. The electric fields near the origin due to
the two elements of charge (shown in
Figure 22-9) are large but are of equal
magnitude and nearly oppositely
directed, so they nearly sum to zero.

Near the origin the resultant electric field
is axial and small.

CHECK At the origin, the two electric fields are large, but are oppositely directed and so add
to zero. Far from the origin the two electric fields (Figure 22-7b) are in almost the
same direction so they do not add to zero.

( ƒz ƒ W a),

Example 22-7 on the Axis of a Charged Disk

Consider a uniformly charged thin disk of radius b and surface charge density (a) Find the
electric field at all points on the axis of the disk. (b) Show that for points on the axis and far
from the disk, the electric field approaches that of a point charge at the origin with the same
charge as the disk. (c) Show that for a uniformly charged disk of infinite radius, the electric
field is uniform throughout the region on either side of the disk.

PICTURE We can calculate the field on the axis of the disk by treating the disk as a set of
concentric, uniformly charged rings.

SOLVE

s.

E
S

da

b

a

z
dE

F I G U R E  2 2 - 1 0 A uniform disk of
charge can be treated as a set of ring
charges, each of radius a.

(a) 1. Calculate the field on the axis of the
disk by treating the disk as a set of
concentric rings of charge. The field
of a single uniformly charged ring
that has a charge and a radius a is
shown in Equation 22-8:

Q

where Ez �
kQz

(z2 � a2)3>2
E
S

� Ez kn,

2. Sketch the disk (Figure 22-10) and
illustrate the electric field on its
axis due to a single ring of charge

radius and width :daa,dq,

dE
S

so Ez � �  

kzdq

(z2 � a2)3>2
� kz�  

dq

(z2 � a2)3>2

dEz �
kzdq

(z2 � a2)3>2
3. Substitute for and for in

the step-1 result. Then integrate
both sides to calculate the resultant
field for the entire disk. The field
point remains fixed, so is constant:z

EzdEzQdq

The electric field on the axis of a uniformly charged circular ring of radius and
charge is given by where

22-8

Equation 22-8 is derived in Example 22-5.

Ez �
kQz

(z2 � a2)3>2

E
S

� Ez kn,Q
a

See 

Math Tutorial for more

information on

Binomial Expansion 
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* Both Excel and Mathematica use the definition of the sign function given here. Texas Instruments, however, uses a definition in which sign(0) returns instead of 0.�1

where By definition*:

sign(z) � c �1 z � 0
0 z � 0

�1 z � 0

sign(z) � z> ƒz ƒ .

sign(z) # 2pks§1 �
1B1 �

b2

z2

¥ �

 Ez � pkzs 
u�1>2

� 
1
2

`
z2

�b2

z
2

� �2pkzsa
13z2 � b2

�
13z2
b

(b) 1. For (on the axis far from the disk) we expect
the electric field to decrease inversely with like that
of a point charge. To show this we use the binomial
expansion:

z2,
�zz W b The binomial expansion (to first order) is

for ƒx ƒ V 1.(1 � x)n � 1 � nx

5. Evaluate the integral and simplify the result:

4. To evaluate this integral we change integration variables
from to The charge where is
the area of a ring of radius and width da:a

dA � 2pa dadq � s dA,a.q
so

where so du � 2ada.u � z2 � a2,

 Ez � pkzs �
b

0
 

2ada
(z2 � a2)3>2

� pkzs �
z2

�b2

z
2

�02
 u�3>2 du

 dq � s dA � s2pada

2. Apply the binomial expansion to the rightmost term in
the step-5 result:

z2
W b21B1 �

b2

z2

� a1 �
b2

z2 b
�1>2

� 1 �
1
2

 
b2

z2

3. Substitute into the step-5 result and simplify. [For 
sign .] Thus, the approximate expression
for the field for is the same as that of a point
charge at the origin:Q � spb2

z W b
(z) � 1

z W b,

where Q � spb2.

 z W b
kQ

z2� 2pks 
1
2

 
b2

z2 �Ez � 2pksa1 � c1 �
1
2

 
b2

z2 d b

(c) 1. Take the limit of the Part (a) , step-5 result as 
This result is an expression for that is uniform, both
in the region and in the region z � 0:z � 0

Ez

b S  �.

CHECK We expect the electric field be in opposite directions on opposite sides of
the disk. The Part (a) , step-5 result meets this expectation.

TAKING IT FURTHER According to the Part (c) result the electric field is discon-
tinuous at (Figure 22-11) where the field jumps from to as
we cross the plane. There is thus a discontinuity in in the amount

PRACTICE PROBLEM 22-5 The electric field due to a uniform surface charge on
the entire plane is given by the Part (c) result. What fraction of the field on
the axis at is due to the surface charge within a circle that has a radius

centered at the origin? Hint: Divide the Part (a), step 5 result by the Part (c) re-
sult after substituting 5a for b and a for z.
r � 5a

z � az
z � 0

4pks � s>P0 .
Ezz � 0

�2pksin�2pksinz � 0

sign(z) # 2pks�Ez � sign(z) # 2pksa1 �
121 � �

b

z

Ez

2    kπ σ

–2    kπ σ

F I G U R E  2 2 - 1 1 Graph showing the discontinuity
of at a plane charge. Can you see the similarity
between this graph and the one in Figure 22-8?

E
S
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The answer to Practice Problem 22-5 depends not on but on the ratio 
Eighty percent of the field at any distance from a uniformly charged plane
surface is due to the charge within a circle whose radius is equal to multiplied
by that distance.

The formula for the electric field on the axis of a uniformly charged circular
disk, established in Example 22-7, is

22-9

ELECTRIC FIELD ON AXIS OF 
A UNIFORM DISK OF CHARGE

where sign( ) is defined in Part (a), step 5 of Example
22-7 and is the radius of the disk. The field of a uni-
formly charged electric plane of charge can be obtained
from Equation 22-9 by letting the ratio go to infinity.
Then

22-10

ELECTRIC FIELD OF 
A UNIFORM PLANE OF CHARGE

Figure 22-12 shows the electric fields of a point charge, a uniform disk of charge,
and an infinite plane of charge as a function of position.

As we move along the axis, the electric field jumps from 
to when we pass through the plane (Figure 22-11). Thus, at 
there is a discontinuity in in the amount 4pks.Ez

z � 0z � 0�2pksin
�2pksinz

Ez � sign(z) # 2pks � sign(z) #
s

2P0

R>z

R
z

Ez � sign(z) # 2pks§1 �
1A1 �

R2

z2

¥

5a
a

r>a � 5.a,
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0 0

200

100

0

Ez, kN/C

z, cm
2 4 8

Disk charge
Infinite plane

150

50

6

Point charge

F I G U R E  2 2 - 1 2 A disk and a point have equal charges, and an infinite
plane and the disk have equal uniform surface-charge densities. Note
that the field of the disk charge converges with the field of the point charge
as approaches infinity, and equals the field of the infinite plane charge as 
approaches zero.

zz

Example 22-8 Electric Field Due to Two Infinite Planes

In Figure 22-13, an infinite plane of surface charge density 
lies in the plane, and a second infinite plane of surface charge
density lies in the plane. Find the electric field
at (a) and (b)

PICTURE Each charged plane produces a uniform electric field of magni-
tude We use superposition to find the resultant field. Between
the planes the fields add, producing a net field of magnitude in the 
direction. For x > 2.00 m and for the two fields point in opposite di-
rections and thus sum to zero.

SOLVE

x � 0,
�xs>P0

E � s>(2P0).

x � 5.00 m.x � 1.80 m
x � 2.00 ms � �4.50 nC>m2

x � 0.00 m
s � �4.5 nC>m2

21O 3 x, m

y

z

+

+
+

+

+

+
+

– –

–

–
–

–

–
–

+
+ –

F I G U R E  2 2 - 1 3

(a) 1. Calculate the magnitude
of the field produced by
each plane:

E

 � 254 N>C

 � (4.50 � 10�9 N>C)>(2 # 8.85 � 10�12)

 E � ƒs ƒ>(2P0)

2. At between
the planes, the field due
to each plane points in the

direction:�x

x � 1.80 m,

508 N>C �

 Ex net � E1 � E2 � 254 N>C � 254 N>C
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CHECK Because the two planes have equal and opposite charge densities, electric field lines
originate on the positive plane and terminate on the negative plane. is equal to zero except
between the planes.

TAKING IT FURTHER Note that not just at but at any point in
the region between the charged planes. The charge configuration described in this example
is that of a parallel-plate capacitor. Capacitors are discussed in Chapter 24.

x � 1.8 mEx net � 508 N>C

E
S

+–

F I G U R E  2 2 - 1 4 A surface of arbitrary shape enclosing an
electric dipole. As long as the surface encloses both charges,
the number of lines penetrating the surface from the inside is
exactly equal to the number of lines penetrating the surface
from the outside no matter where the surface is drawn.

+2q+2q –q–+

(b) At the fields due to the two
planes are oppositely directed:

x � 5.00 m, 0.00 N>CEx net � E1 � E2 �

22-2 GAUSS’S LAW

In Chapter 21, the electric field is described visually by using electric field lines.
Here that description is put in rigorous mathematical language called Gauss’s law.
Gauss’s law is one of Maxwell’s equations—the fundamental equations of electro-
magnetism—which are the topic of Chapter 30. In electrostatics, Gauss’s law and
Coulomb’s law are equivalent. Electric fields arising from some symmetrical
charge distributions, such as a uniformly charged spherical shell or uniformly
charged infinite line, can be easily calculated using Gauss’s law. In this section, we
give an argument for the validity of Gauss’s law based on the properties of electric
field lines. A more rigorous derivation of Gauss’s law is presented in Section 22-6.

A closed surface—like the surface of a soap bubble—is one that divides the uni-
verse into two distinct regions, the region enclosed by surface and the region out-
side the surface. Figure 22-14 shows a closed surface of arbitrary shape enclosing a
dipole. The number of electric field lines beginning on the positive charge and pen-
etrating the surface from the inside depends on where the surface is drawn, but any
line penetrating the surface from the inside also penetrates it from the outside. To
count the net number of lines out of any closed surface, count any penetration from
the inside as and any penetration from the outside as Thus, for the surface
shown (Figure 22-14), the net number of lines out of the surface is zero. For surfaces
enclosing other types of charge distributions, such as that shown in Figure 22-15, the
net number of lines out of any surface enclosing the charges is proportional to the net charge
enclosed by the surface. This rule is a statement of Gauss’s law.

�1.�1,

F I G U R E  2 2 - 1 5 A surface of arbitrary shape enclosing the charges
and Either the field lines that end on do not pass through the

surface or they penetrate it from the inside the same number of times as
from the outside. The net number that exit, the same as that for a single
charge of is equal to the net charge enclosed by the surface.�q,

�q�q.�2q
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ELECTRIC FLUX

The mathematical quantity that corresponds to the number of field lines pene-
trating a surface is called the electric flux For a surface perpendicular to 
(Figure 22-16), the electric flux is the product of the magnitude of the field and
the area 

The units of electric flux are Because is proportional to the number
of field lines per unit area, the flux is proportional to the number of field lines pen-
etrating the surface.

In Figure 22-17, the surface of area is not perpendicular to the electric field
However, the number of lines that penetrate the surface of area is the same

as the number that penetrate the surface of area which is normal (perpendicu-
lar) to These areas are related by

22-11

where is the angle between and the unit vector that is normal to the surface
as shown in the figure. The electric flux through a surface is defined to be

22-12

where is the component of normal to the surface.
Figure 22-18 shows a curved surface over which may vary. If the area of

the surface element that we choose is small enough, it can be modeled as a plane,
and the variation of the electric field across the element can be neglected. The flux
of the electric field through this element is

where is the unit vector perpendicular to the surface element and is the
electric field on the surface element. If the surface is curved, the unit vectors for the
different small surface elements will have different directions. The total flux
through the surface is the sum of over all the elements making up the surface.
In the limit, as the number of elements approaches infinity and the area of each el-
ement approaches zero, this sum becomes an integral. The general definition of
electric flux is thus

22-13

DEFINITION—ELECTRIC FLUX

where the stands for the surface we are integrating over.* The sign of the flux
depends on the choice for the direction of the unit normal By choosing to be
out of one side of a surface we are determining the sign of and thus the sign
of the flux through the surface.

On a closed surface we are interested in the electric flux through the surface, and
by convention, we always choose the unit vector to be out of the surface at each
point. The integral over a closed surface is indicated by the symbol The total or
net flux through a closed surface is therefore written

22-14fnet � CS
 E
S

# nn dA � CS
 En dA

S
A .

nn

E
S

# nn,
nnnn.

S

f � lim
¢Ai S0ai E

S

i
# nn i ¢Ai � �

S

 E
S

# nn  dA

¢fi

E
S

inni

¢fi � Eni ¢Ai � E
S

i
# nn i ¢Ai

¢AiE
S

E
S

En � E
S

# nn

f � E
S

# nnA � EA cos u � En A

A2 ,
nnE

S

u

A2 cos u � A1

E
S

.
A1 ,

A2E
S

.
A2

EN # m2>C.

f � EA

A:
E

E
S

f.

E
A

F I G U R E  2 2 - 1 6 Electric field lines of a
uniform field penetrating a surface of area 
that is oriented perpendicular to the field. The
product is the electric flux through the
surface.

EA

A

Eθ
n̂

A1
A2

A2 cos    = A1θ

F I G U R E  2 2 - 1 7 Electric field lines of a
uniform electric field that is perpendicular 
to the surface of area but makes an 
angle with the unit vector that is 
normal to the surface of area Where is 
not perpendicular to the surface, the flux is

where is the component of 
that is perpendicular to the surface. The flux
through the surface of area is the same as
that through the surface of area A1 .

A2

E
S

En � E cos uEn A,

E
S

A2 .
nnu

A1

* The flux of a vector field through a surface is a mathematical operation used to describe the flow rates of fluids and
rates of heat transfers. In addition, it is used to relate electric fields with the charges that produce them.

E
ni

i

∆Ai

F I G U R E  2 2 - 1 8 If varies from place to
place on a surface, either because the
magnitude varies or because the angle
between and varies, the area of the
surface is divided into small elements of area

The flux through the surface is computed
by summing over all the area
elements.

E
S

i
# nn i ¢Ai

¢Ai .

nnE
S

E

En
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The net flux through the closed surface is positive or negative, depending
on whether is predominantly outward or inward at the surface. At points on the
surface where is inward, is negative.

QUANTITATIVE STATEMENT OF GAUSS’S LAW

Figure 22-19 shows a spherical surface of radius that has a point charge at its
center. The electric field everywhere on this surface is normal to the surface and
has the magnitude

The net flux of out of this spherical surface is

where we have taken out of the integral because it is constant everywhere on the
surface. The integral of over the surface is just the total area of the surface,
which for a sphere of radius is Using this and substituting for 
we obtain

22-15

Thus, the net flux out of a spherical surface that has a point charge at its cen-
ter is independent of the radius of the sphere and is equal to divided by 
This is consistent with our previous observation that the net number of lines through
a closed surface is proportional to the net charge inside the surface. This number of lines
is the same for all closed surfaces surrounding the charge, independent of the shape of the sur-
face. Thus, the net flux out of any surface surrounding a point charge equals 

We can extend this result to systems containing multiple charges. In Figure 22-20,
the surface encloses two point charges, and and there is a third point charge

outside the surface. Because the electric field at any point on the surface is the
vector sum of the electric fields produced by each of the three charges, the net flux

out of the surface is just the sum of the fluxes 
( where ) due to the individual charges. The flux 
(due to charge which is outside the surface) is zero because every field line from

that enters the region bounded by the surface at one point leaves the region sur-
face at some other point. The flux out of the surface due to charge is 
and the flux due to charge is The net flux out of the surface therefore
equals which may be positive, negative, or zero depending on
the signs and magnitudes of and 

The net outward flux through any closed surface equals the net charge in-
side the surface divided by 

22-16

GAUSS’S LAW

This is Gauss’s law. It reflects the fact that the electric field due to a single point
charge varies inversely with the square of the distance from the charge. It was this
property of the electric field that made it possible to draw a fixed number of elec-
tric field lines from a charge and have the density of lines be proportional to the
field strength.

fnet � CS

 E
S

# nn dA � CS

 En dA �
Qinside

P0

P0 :

q2 .q1

fnet � (q1 � q2)>P0 ,
f2 � q2>P0 .q2

f1 � q1>P0q1

q3

q3

f3fi � AS E
S

i
# nn dAfnet � ©fi ,

fnet � AS (E
S

1 � E
S

2 � E
S

3) # nn dA

q3

q2 ,q1

Q>P0 .Q

P0 .QR
Q

fnet �
kQ

R2  4pR2 � 4pkQ � Q>P0

En ,kQ>R24pR2.R
dA

En

fnet � CS
 En dA � En CS

 dA

E
S

En �
kQ

R2

QR

EnE
S

E
S

fnet

kQ
R2En =

dA

R

Q+

F I G U R E  2 2 - 1 9 A spherical surface
enclosing a point charge The net flux
is easily calculated for a spherical surface.
It equals multiplied by the surface area,
or En 4pR2.

En

Q.

q1

q2

q3

+

+

+

E3

E1

E2

n̂

F I G U R E  2 2 - 2 0 A surface enclosing
point charges and but not The net flux
out of this surface is 4pk(q1 � q2).

q3 .q2,q1

TIPL22_727-762-hr  3/29/07  10:31 AM  Page 740



Gauss’s Law S E C T I O N  2 2 - 2 | 741

Gauss’s law is valid for all surfaces and all charge distributions. For charge dis-
tributions that have high degrees of symmetry, it can be used to calculate the elec-
tric field, as we illustrate in the next section. For static charge distributions, Gauss’s
law and Coulomb’s law are equivalent. However, Gauss’s law is more general in
that it is always valid whereas the validity of Coulomb’s law is restricted to static
charge distributions.

Example 22-9 Flux through a Piecewise-Continuous Closed Surface

An electric field is given by throughout the region and by
throughout the region An imaginary soup-can-shaped surface that

has a length equal to 20 cm and a radius equal to has its center at the origin and
its axis along the axis, so that one end is at and the other is at 
(Figure 22-21). (a) What is the net outward flux through the closed surface? (b) What is the
net charge inside the closed surface?

PICTURE The closed surface described, which is piecewise continuous, consists of three
pieces—two flat ends and a curved side. Separately calculate the flux of out of each
piece of this surface. To calculate the flux out of a piece draw the outward normal at an
arbitrarily chosen point on the piece and draw the vector at the same point. If 
is the same everywhere on the piece, then the outward flux through the piece is , where

is the area of the piece. The net outward flux through the entire closed surface is ob-
tained by summing the fluxes through the individual pieces. The net outward flux is re-
lated to the charge inside by Gauss’s law (Equation 22-16).

A
En A

En � E
S

# nnE
S

nn
E
S

z � �10 cmz � �10 cmz
5.00 cmR

z � 0.E
S

� �(200 N>C)kn
z � 0E

S

� �(200 N>C)kn

SOLVE

(a) 1. Sketch the soup-can-shaped surface. On each piece of the surface draw the outward
normal and the vector (Figure 22-21):E

S

nn

2. Calculate the outward flux through the right end of the
“can” (the piece of the surface at 
On this piece nn � kn:

z � �10 cm).

E

n̂

y

z

E

n̂

dA

dA

E
n̂

F I G U R E  2 2 - 2 1

 � 1.57 N # m2>C

� �(200 N>C)kn # kn(p)(0.0500 m)2 fright � E
S

right
# nnright A � E

S

right
# knpR2

3. Calculate the outward flux through the left end of the
“can” (the piece of the surface at where
nn � �kn:

z � �10 cm),

 � 1.57 N # m2>C

 � �(200 N>C)kn # (�kn)(p)(0.0500 m)2

 fleft � E
S

left
# nn left A � E

S

left
# (�kn)pR2

4. Calculate the outward flux through the curved surface.
On the curved surface is in the radial direction,
perpendicular to the axis:z

nn
because everywhere on the curved piece.)E

S

# nn � 0 (fcurved � 0

fcurved � E
S

curved
# nncurved A � 0

5. The net outward flux is the sum through all the
individual surfaces:

3.14 N # m2>C �

 � 1.57 N # m2>C � 1.57 N # m2>C � 0 fnet � fright � fleft � fcurved

(b) Gauss’s law relates the charge inside to the net flux:

2.78 	 10�11 C � 27.8 pC �

� (8.85 	 10�12 C2>N # m2)(3.14 N # m2>C) Qinside � P0 fnet

CHECK The flux through either end of the can does not depend on the length of the can.
This result is expected for an electric field that does not vary with distance from the 
plane.

TAKING IT FURTHER The net flux does not depend on the length of the can. Thus, the
charge inside resides entirely on the plane.z � 0

z � 0
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22-3 USING SYMMETRY TO CALCULATE 
WITH GAUSS’S LAW

Given a highly symmetrical charge distribution, the electric field can often be calcu-
lated more easily by using Gauss’s law than it can by using Coulomb’s law. There are
three classes of symmetry to consider. A charge configuration has cylindrical (or line)
symmetry if the charge density depends only on the distance from a line, plane sym-
metry if the charge density depends only on the distance from a plane, and spherical
(or point) symmetry if the charge density depends only on the distance from a point.

PROBLEM-SOLVING STRATEGY

Calculating Using Gauss’s Law

PICTURE Determine if the charge configuration belongs to one of the three
symmetry classes. If it does not, then try another method to calculate the
electric field. If is does, then sketch the charge configuration and establish the
magnitude and direction of the electric field using symmetry considerations.

SOLVE

1. On the sketch draw an imaginary closed surface, called a Gaussian surface
(for example, the soup can in Example 22-9). This surface is chosen so that
on each piece of the surface is either zero, normal to the surface with 
the same everywhere on the piece, or parallel to the surface 
everywhere on the piece. For a configuration that has cylindrical (line)
symmetry, the Gaussian surface is a cylinder coaxial with the symmetry
line. For a configuration that has plane symmetry, the Gaussian surface is
a cylinder bisected by the symmetry plane and with its symmetry axis
normal to the symmetry plane. For a configuration that has spherical
(point) symmetry, the Gaussian surface is a sphere centered on the
symmetry point. On each piece of the Gaussian surface sketch an area
element an outward normal and the electric field 

2. Closed cylindrical surfaces are piecewise continuous, with the surface
divided into three pieces. Spherical surfaces consist of a single piece.
The flux through each piece of a properly chosen Gaussian surface
equals where is the component of normal to the piece and is
the area of the piece. Add the fluxes to obtain the total outward flux
through the closed surface.

3. Calculate the total charge inside the Gaussian surface.
4. Apply Gauss’s law to relate to the charges inside the closed surface and

solve for .En

En

AE
S

EnEn A,

E
S

.nn,dA,

(En � 0)
EnE

S

E
S

E
S

E
S

Example 22-10 Due to a Uniformly Charged Slab

A very large (infinite), uniformly charged slab of plastic of thickness 2a occupies the region
between the plane and the plane. Find the electric field everywhere due this
charge configuration. The charge per unit volume of the plastic is 

PICTURE The charge configuration has plane symmetry, with the plane as the sym-
metry plane. Use symmetry arguments to determine the direction of the electric field every-
where. Then, apply Gauss’s law and solve for the electric field.

z � 0

r.
z � �az � �a

E
S

Is the electric field in Gauss’s
law only that part of the electric
field due to the charges inside a
surface, or is it the total electric
field due to all the charges both
inside and outside the surface?

E
S

CONCEPT CHECK 22-1✓

SOLVE

1. Use symmetry considerations to determine the direction of 
Because the sheet is infinite, there is no preferred direction
parallel to the sheet:

E
S

. For points directly away from the plane, and for
points directly toward the plane. On the 

plane E
S

� 0.
z � 0z � 0r � 0, E

S

z � 0r � 0, E
S
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S

E

n̂

dA

E

n̂

z

y

+z−z

E
n̂

x

dA

+a−a

F I G U R E  2 2 - 2 2 Gaussian surface for
the calculation of due to an infinite plane
of charge. (Only the part of the plane that is
inside the Gaussian surface is shown.) On the
flat faces of this soup-can-shaped surface, 
is perpendicular to the surface and constant
in magnitude. On the curved surface is
parallel with the surface.

E
S

E
S

E
S

2. Sketch the charge configuration that has a
suitable Gaussian surface—a cylinder bisected
by the symmetry plane (the plane with
its axis normal to the plane). The
cylinder extends from to (Figure 22-22):�z�z

z � 0
z � 0

3. Write down Gauss’s law 
(Equation 22-16):

fnet � CS
 E
S

# nn dA �
Qinside

P0

4. The outward flux through the surface is
equal to the sum of the fluxes through each
piece of the surface. Draw both and at 
an area element on each piece of the surface
(Figure 22-22):

E
S

nn

E
S

where

fcurved side � �
curved side

 E
S

# nn dA

fright end � �
right end

 E
S

# nn dA

fleft end � �
left end

 E
S

# nndA

fnet � fleft end � fright end � fcurved side

5. Because is zero everywhere on the
curved piece of the surface, the flux through
the curved piece is zero:

E
S

# nn fcurved side � 0

6. is uniform on the right end of the surface,
so can be factored from the
integral. Let be the area of the end of right
end of the surface:

A
E
S

# nn � En

E
S

� En�
right end

 dA � EnA

 fright end � �
right end

 E
S

# nn dA ��
right end

 En dA

7. The two ends of the surface are the same
distance from the symmetry plane (the 
plane), so on the left end is equal and
opposite to on the right end. The normals
on the two ends are equal and opposite as
well. Thus, is the same on both
ends. It follows that the flux out of both ends
is the same as well:

E
S

# nn � En

E
S

E
S

z � 0
is the same on the two ends,

‹ fleft end � fright end � En A

E
S

# nn � En

8. Add the individual fluxes to get the net flux
out of the surface:

� En A � En A � 0 � 2En A fnet � fleft end � fright end � fcurved side

9. Solve for the charge inside the Gaussian
surface. The volume of a cylinder is the
cross-sectional area multiplied by the length.
The cylinder has a length of 2z.

(z � a)Qinside � rA2z

(z � a)Qinside � rA2a

10. Substitute the step-8 and step-9 results into
(the step-3 result) and solve

for on the right end of the surface:En

fnet � Qinside>P0

For so 
For so
En � r ƒz ƒ>P0 .

2En A � rA2 ƒz ƒ>P0 ,�a � z � a,
En � ra>P0 .2En A � rA2a>P0 ,ƒz ƒ � a,

11. Solve for as a function of In the region
so this means is

in the direction so is negative:Ez�z
E
S

Ez � �En ;nn � �kn,z � 0,
z.E

S

or b sign(z) # (ra>P0)k
n ( ƒz ƒ � a)

sign(z) # (r ƒz ƒ>P0)k
n ( ƒz ƒ � a)E

S

� Ez kn �

c �(ra>P0)k
n (z � �a)

(rz>P0)k
n (�a � z � a)

�(ra>P0)k
n (z � �a)

E
S

� Ez kn �

CHECK The electric field has units of According to our step 11 results, should
have the same units. It does, as has units of and has
units of m.

TAKING IT FURTHER Outside the slab the electric field is the same as that of the uniformly
charged plane of Equation 22-10, with Figure 22-23 shows a graph of versus for the
charged slab. Compare this graph with that of Figure 22-11 which shows a graph of versus 
for the charged plane. These graphs are readily compared if you recognize that 2pk � 1>(2P0).

zEz

zEzs � 2ra.

aC>m3,P0 � 8.85 � 10�12 C2>(N # m2), r
ra>P0N>C.

Ez

z+a−a

+4   kρa π 

− 4   kρa π 

F I G U R E  2 2 - 2 3 A graph of 
versus for a uniformly charged infinite
slab of thickness 2 and charge density r.a

z
Ez
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We can use Gauss’s law to derive Coulomb’s law. This is accomplished by ap-
plying Gauss’s law to find the electric field a distance r from a point charge 
Place the origin at the location of the point charge and choose a spherical
Gaussian surface of radius centered on the point charge. The outward normal

to this surface is equal to the unit vector By symmetry, is directed either
radially outward or radially inward, so It follows that the compo-
nent of normal to the surface, equals the radial component That is,

Also, the magnitude of can depend on the distance
from the charge but not on the direction from the charge. It follows that has
the same value everywhere on the surface. The net flux of through the spher-
ical surface of radius is thus

where (the area of the spherical surface). Because the total charge

inside the surface is just the point charge Gauss’s law gives

Solving for gives

which is Coulomb’s law. We have thus derived Coulomb’s law from Gauss’s law.
Because for static charges Gauss’s law can also be derived from Coulomb’s law
(see Section 22-6), we have shown that the two laws are equivalent (for static
charges).

Er �
1

4pP0

 
q

r2

Er

Er 4pr2 �
q

P0

q,
CS

 dA � 4pr2

fnet � CS
 E
S

# nn dA � CS
 En dA � En CS

 dA � Er 4pr2

r
E
S

En

E
S

En � E
S

# nn � E
S

# rn � Er .
E
S

.E
S

En ,E
S

� Er rn.
E
S

rn.nn
r

q.

Example 22-11 Due to a Thin Spherical Shell of Charge

Find the electric field due to a uniformly charged thin spherical shell of radius and total
charge 

PICTURE This charge configuration depends only on the distance from a single point—the
center of the spherical shell. Thus, the configuration has spherical (point) symmetry. This
symmetry dictates that must be radial and have a magnitude that depends only on the
distance from the center of the spherical shell. A spherical Gaussian surface that has an
arbitrary radius and is concentric with the charge configuration is needed.

SOLVE

r
r

E
S

Q.
R

E
S

1. Sketch the charge configuration and a spherical Gaussian surface
of radius Include an area element the normal and

the electric field on the area element (Figure 22-24):E
S

nn,dA,r � R.S

R

S

r

+
+
+

E

n̂
r̂

F I G U R E  2 2 - 2 4 Spherical Gaussian
surface of radius for the calculation of
the electric field outside a uniformly charged
thin spherical shell of radius R.

r � R

2. Express Gauss’s law (Equation 22-16): fnet � CS
 En dA �

Qinside

P0

3. The value of is the same everywhere on Thus we can
factor it from the integral:

S.En En CS
 dA �

Qinside

P0
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CHECK Outside the charged shell, the electric field is the same as that of a point charge 
at the shell’s center. This result is expected for 

TAKING IT FURTHER The step-6 result can also be obtained by direct integration of
Coulomb’s law, but that calculation is much more challenging. 

r W R.
Q

4. The integral of the area element over the surface is just the
area of the sphere. The area of the sphere is 4pr2:

S
En 4pr2 �

Qinside

P0

5. Due to the symmetry, Substitute for and solve 
for :Er

EnErEn � Er . Er �
1

4pP0

 
Qinside

r2

6. For For r � R, Qinside � 0:r � R, Qinside � Q. where E
S

� Er rn,

Figure 22-25 shows versus for a spherical-shell charge distribution. Again,
note that the electric field is discontinuous at where the surface charge
density is Just outside the shell, the electric field is

because Because the field just inside the
shell is zero, the electric field is discontinuous at by the amount 

The electric field of a uniformly charged thin spherical shell is given by 
where

22-17a

22-17b Er � 0  r � R

 Er �
1

4pP0

 
Q

r2  r � R

E
S

� Er rn,
s/P0 .r � R

s � Q>4pR2.Er � Q>(4pP0 R2) � s>P0 ,
s � Q>(4pR2).

r � R,
rEr

Er

r

R

R
O

Er = 0

Er =
     1

4
 Q
 r2πe0

+

+

+

(a) (b)

F I G U R E  2 2 - 2 5 (a) A plot of versus for a thin spherical shell charge distribution.
The electric field is discontinuous at where there is a surface charge of density 
(b) The decrease in over distance due to a charged spherical shell is evident by the effect
of the field on the flames of two candles. The spherical shell at the left (part of a Van de
Graaff generator, a device that is discussed in Chapter 23) has a large negative charge that
attracts the positive ions in the nearby candle flame. The flame at right, which is much
farther away, is not noticeably affected. (Runk/Schoenberger from Grant Heilmann.)

Er

s.r � R,
rEr

 Er � 0  r � R

 Er �
1

4pP0 
 

Q

r2  r � R
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(a) 1. Inside the shell, is due only to the point charge:E
S

1 E
S

1 �
kq

r2
1

 rn1

2. Calculate the square of the distance :r1 r2
1 � (2.00 m)2 � (2.00 m)2 � 8.00 m2

3. Use to calculate the magnitude of the field:r1 � 281 N>CE1 �
kq

r2
1

�
(8.99 	 109 N # m2>C2)(250 	 10�9 C)

8.00 m2

E

r1

45°

q

y, m

x, m

1

1

r2

Es

Ep

θ

q

y, m

x, m

E2 = Es + Ep

2

(a) (b)

F I G U R E  2 2 - 2 6

4. From Figure 22-26a, we can see that the field makes an angle
of with the axis:x45°

u1 � 45.0°

5. Express in terms of its components:E
S

1

(199in � 199jn) N>C �

 � (281 N>C) cos 45.0° in � (281 N>C) sin 45.0° jn

 E
S

1 � E1x in � E1y jn � E1 cos 45.0° in � E1 sin 45.0° jn

(b) 1. Outside of its perimeter, the field of the shell can be
calculated as if the shell were a point charge at the origin,
and the field due to the shell is therefore along the axis:xE

S

S

E
S

S �
kQ

x2
2

 in

2. Calculate the total charge on the shell:Q Q � s4pR2 � (3.00 nC>m2)4p(3.00 m)2 � 339 nC

3. Use to calculate the field due to the shell:Q � 190 N>CES �
kQ

x2
2

�
(8.99 	 109 N # m2 >C2)(339 	 10�9C)

(4.00 m)2

4. The field due to the point charge is: E
S

P �
kq

r2
2

 rn2

SOLVE

Example 22-12 Electric Field Due to a Point Charge and a Charged Spherical Shell

A spherical shell of radius has its center at the origin and has a surface charge
density of A point charge is on the axis at Find
the electric field on the axis at (a) and (b)

PICTURE We separately find the field due to the point charge and that due to the spherical
shell and sum the field vectors in accord with the principle of superposition. For Part (a), the
field point is inside the shell, so the field is due only to the point charge (Figure 22-26a). For
Part (b) , the field point is outside the shell, so the field due to the shell can be calculated as
if the charge were a point charge at the origin. We then add the fields due to the two point
charges (Figure 22-26b).

x � 4.00 m.x � 2.00 mx
y � 2.00 m.yq � 250 nCs � 3.00 nC/m2.

R � 3.00 m
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CHECK The Part (b), step 8 result is qualitatively in agreement with Figure 22-26b. That is,
is positive, is negative, and 

TAKING IT FURTHER Specifying the and components of a vector completely speci-
fies the vector. In these cases, the component is zero.z

zx, y,

ƒEy ƒ � Ex .EyEx

5. Calculate the square of the distance from the point charge 
on the axis to the field point at x � 4.00 m:y

q r2
2 � (2.00 m)2 � (4.00 m)2 � 20.0 m2

6. Calculate the magnitude of the field due to the point charge: � 112 N>CEP �
kq

r2
2

�
(8.99 	 109 N # m2>C2)(250 	 10�9 C)

20.0 m2

7. This field makes an angle with the axis, where:xu tan u �
2.00 m
4.00 m

� 0.500 ⇒ u � tan�1
 0.500 � 26.6°

8. The and components of the net electric field are thus:yx

(290in � 50.0jn) N>C E
S

2 �

 � �(112 N>C) sin 26.6° � �50.0 N>C

 Ey � EPy � ESy � �Ep sin u � 0

 � (112 N>C) cos 26.6° � 190 N>C � 290 N>C

 Ex � EPx � ESx � EP cos u � ES

Example 22-13 Due to a Uniformly Charged Solid Sphere

Find the electric field everywhere for a uniformly charged solid sphere that has a radius 
and a total charge that is uniformly distributed throughout the volume of the sphere that
has a charge density where is the volume of the sphere.

PICTURE The charge configuration has spherical symmetry. By symmetry, the electric field
must be radial. We choose a spherical Gaussian surface of radius (Figure 22-27a and Figure
22-27b). On the Gaussian surface, is the same everywhere, and Gauss’s law thus
relates to the total charge inside the Gaussian surface.

SOLVE

Er

En � Er .En

r

V � 4
3 pR3r � Q>V,

Q
R

E
S

DUE TO A UNIFORMLY CHARGED SPHEREE
S

E

+

+

+

R

r

dA

n̂

r̂

(b)

(a)

+

++

R

r
dA

Er

n̂
r̂

F I G U R E  2 2 - 2 7

1. Draw a charged sphere of radius and draw a
spherical Gaussian surface with radius (Figure
22-27a for and Figure 22-27b for ):r � Rr � R

r
R

2. Relate the flux through the Gaussian surface to the
electric field on it. At every point on this surface

and has the same value:Ernn � rn
Er (The surface area of a sphere of

radius is 4pr2.)r

fnet � E
S

# nnA � E
S

# rnA � Er 4pr2

3. Apply Gauss’s law to relate the field to the total
charge inside the surface:

Er 4pr2 �
Qinside

P0

4. Find for all values of The charge density
where :V � 4

3 pR3r � Q>V,
r.Qinside For 

For 

where 

so

Qinside �
Q

V
 V� �

Q
4
3 pR3

 
4
3 pr3 � Q 

r3

R3

V� � 4
3 pr3

r 
 R, Qinside � rV�,

r � R, Qinside � Q
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We see from Example 22-13 that the electric field a distance from the center of
a uniformly charged sphere of radius is given by where

22-18a

22-18b

and is the total charge of the sphere.Q

 Er �
1

4pP0

 
Q

R3r r � R

 Er �
1

4pP0

 
Q

r2 r � R

E
S

� Er rn,R
r

Example 22-14 Electric Field Due to Infinite Line Charge

Use Gauss’s law to find the electric field everywhere due to an infinitely long line charge of
uniform charge density (This problem was already solved in Example 22-3 using
Coulomb’s law.)

PICTURE Because of the symmetry, we know the electric field is directed away from the line
if is positive (directly toward it if is negative), and we know the magnitude of the field
depends only on the radial distance from the line charge. We therefore choose a cylindrical
Gaussian surface coaxial with the line charge. We calculate the outward flux of through
each piece of the surface, and, using Gauss’s law, relate the net outward flux of to the
charge inside the cylinder.

E
S

E
S

ll

l.

CHECK At the center of the charged sphere the electric
field is zero, as symmetry suggests. For the field is
identical to the field of a point charge at the center of the
sphere, also as expected.

TAKING IT FURTHER Figure 22-28 shows versus 
for the charge distribution in this example. Inside the
sphere of charge, increases with Note that is
continuous at A uniformly charged sphere is
sometimes used as a model to describe the electric field of
an atomic nucleus.

r � R.
Err.Er

rEr

Q
r � R,

5. Substitute into the step 3 result and solve for E
S

 : where

 Er �
1

4pP0

 
Q

r2 
r3

R3 �
1

4pP0

Q

R3  r  r � R

 Er �
1

4pP0

 
Q

r2     r � R

 E
S

� Er rn,

Er

r

R

R

Er =
     1

4
 Q
 R3pP0

r,  r ≤ R

Er =
     1

4
 Q
 r2 ,  r ≥ R

pP0

F I G U R E  2 2 - 2 8
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1. Sketch the wire and a coaxial cylindrical Gaussian surface
(Figure 22-29) that has a length and a radius The closed 
surface consists of three pieces: the two flat ends and the
curved side. At a randomly chosen point on each piece,
draw an area element and the vectors and Because of
the symmetry, we know that the direction of is radial
(either toward or away from the line charge), and we know
that the magnitude depends only on the distance from the
line charge.

E

E
S

nn.E
S

R.L

L

RR

E

n̂

E
n̂

n̂

E

F I G U R E  2 2 - 2 9

2. Calculate the outward flux through the curved piece of the
Gaussian surface. At each point on the curved piece 
where is the unit vector in the radial direction.Rn

Rn � nn,
� ER 2pRLfcurved � E

S

# nnAcurved � E
S

# Rn Acurved

3. Calculate the outward flux through each of the flat ends of the
Gaussian surface. On these pieces the direction of is parallel
with the line charge (and thus perpendicular to ):E

S

nn
fright � E

S

# nnAright � 0

fleft � E
S

# nnAleft � 0

4. Apply Gauss’s law to relate the field to the total charge inside
the surface The net flux out of the Gaussian surface is
the sum of the fluxes out of the three pieces of the surface, and

is the charge on a length of the line charge:LQinside

Qinside .

so where
1

2pP0

 
l

R
ER �E

S

� ER Rn ,ER 2pRL �
lL
P0

fnet �
Qinside

P0

CHECK Because the step-4 result can also be written This is the same
expression for that was obtained by using Coulomb’s law (see Example 22-3).ER

2kl>R.1>(2pP0) � 2k,

SOLVE

In the calculation of for a line charge (Example 22-14), we needed to assume
that the field point was very far from the ends of the line charge so that would
be constant everywhere on the cylindrical Gaussian surface. If we are near the end
of a finite line charge, we cannot assume that is perpendicular to the curved sur-
face of the cylinder, or that is constant everywhere on it, so we cannot use
Gauss’s law to calculate the electric field.

It is important to realize that although Gauss’s law holds for any closed surface
and any charge distribution, it is particularly useful for calculating the electric
fields of charge distributions that have cylindrical, spherical, or plane symmetry. It
is also particularly useful doing calculations involving conductors in electrostatic
equilibrium, as we shall see in Section 22-5.

22-4 DISCONTINUITY OF 

We have seen that the electric field for an infinite plane of charge and a thin spher-
ical shell of charge is discontinuous by the amount at a surface having charge
density We now show that this is a general result for the component of the elec-
tric field that is perpendicular to a surface having a charge density of 

Figure 22-30 shows an arbitrary surface having a surface charge density The
surface is arbitrary in that it is arbitrarily curved, although it does not have any
sharp folds where the normal direction is ambiguous, and may vary continu-
ously on the surface from place to place. We consider electric field in the vicin-
ity of a point on the surface as the superposition of electric field due just to
the charge on a small disk centered at point and the electric field due to 
all other charges in the universe. Thus,

22-19E
S

� E
S

disk � E
S

�

E
S

�P,
E
S

disk ,P
E
S

s

s.
s.

s.
s/P0

E
n

En

E
S

En

E
S

Edisk +

Edisk −

E'

P

P axis
+−

(b)

(a)

F I G U R E  2 2 - 3 0 (a) A surface having
surface charge. (b) The electric field due to
the charge on a circular disk, plus the electric 
field due to all other charges.E

S

�

E
S

disk
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The disk is small enough that it may be considered both flat and uniformly
charged. On the axis of the disk, the electric field is given by Equation 22-9.
At points on the axis very close to the disk, the magnitude of this field is given by

The direction of is away from the disk if is positive, and to-
ward it if is negative. The magnitude and direction of the electric field are un-
known. In the vicinity of point however, this field is continuous. Thus, at points
on the axis of the disk and very close to it, is essentially uniform.

The axis of the disk is normal to the surface, so vector components along this
axis can be referred to as normal components. The normal components of the vectors
in Equation 22-19 are related by If we refer to one side of the surface

as the and the other side as the then and 

Thus, changes discontinuously from one side of the surface to the 

other. That is,

22-20

DISCONTINUITY OF AT A SURFACE CHARGE

where we have made use of the fact that near the disk (because is
continuous and uniform).

Note that the discontinuity of occurs at a finite disk of charge, an infinite
plane of charge (see Figure 22-12), and a thin spherical shell of charge (see Figure
22-25). However, it does not occur at the perimeter of a solid sphere of charge
(see Figure 22-28). The electric field is discontinuous at any location with an in-
finite volume charge density. These include locations that each have a finite point
charge, locations that each have a finite line charge density, and locations that
each have a finite surface charge density. At all locations with a finite surface
charge density, the normal component of the electric field is discontinuous—in
accord with Equation 22-20.

CHARGE AND FIELD AT 22-5
CONDUCTOR SURFACES

A conductor contains an enormous amount of charge that can move freely within the
conductor. If there is an electric field within a conductor, there will be a net force on
this free charge causing a momentary electric current (electric currents are discussed
in Chapter 25). However, unless there is a source of energy to maintain this current,
the free charge in a conductor will merely redistribute itself to create an electric field
that cancels the external field within the conductor. The conductor is then said to be
in electrostatic equilibrium. Thus, in electrostatic equilibrium, the electric field in-
side a conductor is zero everywhere. The time taken to reach equilibrium depends
on the conductor. For copper and other metal conductors, the time is so small that in
most cases electrostatic equilibrium is reached in a few nanoseconds.*

We can use Gauss’s law to show that for a conductor in electrostatic equilibrium,
any net electric charge on the conductor resides entirely on the surface of the con-
ductor. Consider a Gaussian surface completely inside the material of a conductor
in electrostatic equilibrium (Figure 22-31). The size and shape of the Gaussian sur-
face do not matter, as long as the entire surface is embedded within the material of
the conductor. The electric field is zero everywhere on the Gaussian surface because
the surface is completely within the conductor, where the field is everywhere zero.
The net flux of the electric field through the surface must therefore be zero, and, by
Gauss’s law, the net charge inside the surface must be zero. Thus, there can be no
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* At very low temperatures some metals become superconducting. In a superconductor, a current is sustained for a much
longer time, even without an energy source. Superconducting metals are discussed in Chapters 27 and 38.
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E

F I G U R E  2 2 - 3 1 A Gaussian surface
completely within the material of a conductor.
Because the electric field is zero inside the
material a conductor in electrostatic
equilibrium, the net flux through this surface
must also be zero. Therefore, the net charge
density must be zero everywhere within the
material of a conductor.

r
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F I G U R E  2 2 - 3 2 An arbitrarily shaped
conductor having a charge on its surface.
(a) The charge in the vicinity of point near
the surface looks like a small uniformly
charged circular disk centered at giving an
electric field of magnitude pointing
away from the surface both inside and outside
the surface. Inside the conductor, this field
points away from point in the opposite
direction. (b) Because the net field inside the
conductor is zero, the rest of the charges in
the universe must produce a field of
magnitude in the outward direction.
The field due to these charges is the same just
inside the surface as it is just outside the
surface. (c) Inside the surface, the fields shown
in (a) and (b) cancel, but outside they add
to give En � s>P0 .

s>(2P0)

P

s>(2P0)
P,

P

net charge inside any surface lying completely within the material of the conductor.
Therefore, if a conductor has a net charge, it must reside on the conductor’s surface.
At the surface of a conductor in electrostatic equilibrium, must be perpendicular
to the surface. (If the electric field did have a tangential component at the surface,
the free charge would be accelerated tangential to the surface until electrostatic
equilibrium was reestablished.)

Because is discontinuous at any charged surface by the amount and be-
cause is zero inside the material of a conductor, the field just outside the surface
of a conductor is given by

22-21

JUST OUTSIDE THE SURFACE OF A CONDUCTOR

This result is exactly twice the field produced by a uniform disk of surface
charge density We can understand this result from Figure 22-32. The charge on
the conductor consists of two parts: (1) the charge near point and (2) all the rest
of the charge. The charge near point looks like a small, uniformly charged circu-
lar disk centered at that produces a field near of magnitude just inside
and just outside the conductor. The rest of the charges in the universe must pro-
duce a field of magnitude that exactly cancels the field inside the conduc-
tor. This field due to the rest of the charge in the universe adds to the field due to
the small charged disk just outside the conductor to give a total field of s>P0 .

s>(2P0)

s>(2P0)PP
P

P
s.

En

En �
s

P0

E
S

s>P0 ,En

E
S

Example 22-15 The Charge of Earth

While watching a science show on the atmosphere, you find out that on average the electric
field of Earth is about directed vertically downward. Given that you have been
studying electric fields in your physics class, you wonder if you can determine what the total
charge on Earth’s surface is.

PICTURE Earth is a conductor, so any charge it has resides on the surface of Earth. The sur-
face charge density is related to the normal component of the electric field by Equation
22-21. The total charge equals the charge density multiplied by the surface area 

SOLVE

A.sQ
Ens

100 N>C

Context-Rich

1. The surface charge density is related to the normal component of the
electric field by Equation 22-21:En

s En �
s

P0

2. On the surface of Earth, is upward and is downward so is negative:EnE
S

nn En � E
S

# nn � E cos 180° � �E � �100 N>C

3. The charge is the charge per unit area multiplied by the area. Combine
this with the step 1 and 2 results to obtain an expression for :Q

Q Q � sA � P0 En A � �P0 

 
EA
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Figure 22-33 shows a positive point charge at the center of a spherical cavity in-
side a spherical conductor. Because the net charge must be zero within any Gaussian
surface drawn within the material of the conductor, there must be a negative charge 
induced on the surface of the cavity. In Figure 22-34, the point charge has been moved
so that it is no longer at the center of the cavity. The field lines in the cavity are altered,
and the surface charge density of the induced negative charge on the inner surface is
no longer uniform. However, the positive surface charge density on the outside sur-
face is not disturbed—it is still uniform—because it is electrically shielded from the
cavity by the conducting material. The electric field of the point charge and that
of the surface charge on the inner surface of the cavity superpose to produce an
electric field that is exactly zero everywhere outside the cavity. This is obviously true
if the point charge is at the center of the cavity, but it is true even if the point charge
is somewhere else in the cavity. In addition, the surface charge on the outer surface of
the conductor produces an electric field that is exactly zero everywhere inside the
outer surface of the conductor. Furthermore, these statements are valid even if both
the outer surface and the inner surface of the conductor are nonspherical.

�q
q

�q

q

Electric field lines for an oppositely charged
cylinder and plate, shown by bits of fine
thread suspended in oil. Note that the field
lines are normal to the surfaces of the
conductors and that there are no lines inside
the cylinder. The region inside the cylinder is
electrically shielded from the region outside
the cylinder. (Harold M. Waage.)
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4. The surface area of a sphere of radius is given by A � 4pr2:r Q � �P0 EA � �P0 E4pR2
E � �4pP0 ER2

E

5. The radius of Earth is 6.37 	 106 m:

�4.51 	 105 C �

 � �4p(8.85 	 10�12
 

 C2>N # m2)(100 N>C)(6.37 	 106 m)2

 Q � �4pP0 ER2
E

CHECK We will check to see if units in the step 5 calculation are correct. In multiplying
the three quantities, both the newtons and the meters cancel out, leaving only coulombs
as expected.

TAKING IT FURTHER Is a large amount of charge? In Example 21-1 we cal-
culated that the total charge of all the electrons in a copper penny amounts to 
so the total charge on the surface of Earth is only 3.3 times larger than the total charge of all
the electrons in a single copper penny.
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�4.53 	 105 C
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F I G U R E  2 2 - 3 3 A point charge in the cavity at the center of a
thick spherical conducting shell. Because the net charge within the
Gaussian surface (indicated in blue) must be zero, we know a surface
charge is induced on the inner surface of the shell, and because
the conductor is neutral, an equal but opposite charge is induced
on the outer surface. Electric field lines begin on the point charge and
end on the inner surface. Field lines begin again on the outer surface.
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F I G U R E  2 2 - 3 4 The same conductor as in
Figure 22-33 with the point charge moved away from
the center of the sphere. The charge on the outer
surface and the electric field lines outside the sphere
are not affected.

TIPL22_727-762-hr  3/29/07  10:32 AM  Page 752



The Equivalence of Gauss’s Law and Coulomb’s Law in Electrostatics S E C T I O N  2 2 - 6 | 753

THE EQUIVALENCE OF GAUSS’S LAW 22-6
AND COULOMB’S LAW IN ELECTROSTATICS

Gauss’s law can be derived mathematically from Coulomb’s law for the electro-
static case using the concept of the solid angle. Consider an area element on a
spherical surface. The solid angle subtended by at the center of the sphere
is defined to be

where is the radius of the sphere. Because and both have dimensions of
length squared, the solid angle is dimensionless. The SI unit of the solid angle is
the steradian (sr). Because the total area of a sphere is the total solid angle
subtended by a spherical surface is

There is a close analogy between the solid angle and the ordinary plane
angle which is defined to be the ratio of an element of arc length of a
circle to the radius of the circle:

The total plane angle subtended by a circle is 
In Figure 22-35, the area element is not perpendicular to the radial

lines from point The unit vector normal to the area element makes
an angle with the radial unit vector In this case, the solid angle sub-
tended by at point is

22-22

The solid angle is the same as that subtended by the corresponding area
element of a spherical surface of any radius.

Figure 22-36 shows a point charge surrounded by a surface of arbitrary shape.
To calculate the flux of through this surface, we want to find for each el-
ement of area on the surface and sum over the entire surface. The electric field at
the area element shown is given by

so the flux through the element is

The sum of the fluxes through the entire surface is multiplied by the total
solid angle subtended by the closed surface, which is steradians:

22-23

which is Gauss’s law.
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F I G U R E  2 2 - 3 6 A point charge enclosed
by an arbitrary surface. The flux through an
area element is proportional to the solid
angle subtended by the area element at the
charge. The net flux through the surface,
found by summing over all the area elements,
is proportional to the total solid angle at
the charge, which is independent of the shape
of the surface.

4p

¢A

r̂

∆A cos θ

r ∆A

n̂
θO

F I G U R E  2 2 - 3 5 An area element whose
normal is not parallel to the radial line from to the
center of the element. The solid angle subtended by
this element at is defined to be (¢A cos u)>r2.O

O
¢A

*
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Physics Spotlight

Charge Distribution—Hot and Cold

Electrical dipole moment, or polarity, affects the solubility of sub-
stances. Because water has such a strong electric dipole moment, it
works very well as a solvent for other molecules that have both
weak and strong dipole moments and ions. On the other hand,
molecules without dipole moments, or molecules that are so big
that they have large regions without dipole moments, do not dis-
solve well in water. Some oils, for example, do not have dipole
moments and are immiscible with water.

Charge distributions that molecules can have also control
whether substances that are not strictly classified as oils dissolve
well in water. Anyone who has ever bitten into a very spicy-hot
pepper and then taken a large drink of water can testify that water
does not wash away the sensation of pain. Capsaicin, the active
chemical in spicy-hot peppers such as habañeros, serranos, and
piquins, does not dissolve well in cold water because of its charge
distribution.* However, capsaicin’s solubility in water is increased
with the addition of ethyl alcohol, as demonstrated by people who
cool their mouths with beer after spicy-hot peppers. Alcohol mol-
ecules have weak dipole moments, and mix well with both water
and capsaicin. Capsaicin also mixes well with oils, some starches,
and proteins. In many cultures, rice or meat, rather than alcohol, is
used to dissolve capsaicin.

The sensation of pain that people who eat peppers feel is also due to the charge
distributions in molecules. The protein TRPV1 is a neuron receptor in humans that
signals how hot—temperature wise—something is. This protein has a charge dis-
tribution that is changed by a temperature above Proteins change their
shapes (fold and unfold) as the charge distribution changes across the molecule.†

Many protein functions are determined by folding and unfolding caused by
changes in charge distributions.‡ A change in charge distribution on a TRPV1 pro-
tein folds the protein and passes information about how hot a human’s surround-
ings are to neurons. Capsaicin creates the same changes as heat does in the charge
distributions of TRPV1 proteins,# which is why people perceive peppers as hot.
Ginger, a “warm” spice, contains gingerols, which trigger similar receptors by
means of changing charge distributions.° Menthol causes similar charge distribu-
tion changes in proteins that are neuron receptors in humans and signal how cold
surroundings are.§ This is why people perceive mint as cool.

Changes in charge distributions of proteins can cause textural changes in pro-
teins. The salting of caviar, for example, changes the charge distribution of proteins
inside the fish eggs. As the proteins unfold, they thicken the formerly thin fluid
inside the egg to a creamy texture.¶

* Turgut, C., Newby, B., and Cutright, T., “Determination of Optimal Water Solubility of Capsaicin for Its Usage as a
Non-Toxic Antifoulant.” Environmental Science Pollution Research International, Jan.-Feb. 2004, Vol. 11, No. 1, pp. 7–10.

† Suydam, I. T., et al., “Electric Fields at the Active Site of an Enzyme: Direct Comparison of Experiment with Theory.”
Science, Jul. 14, 2006, Vol. 313, No. 5784, pp. 200–204.

‡ Honig, B., and Nicholls, A., “Classical Electrostatics in Biology and Chemisty.” Science, May 26, 1995, Vol. 268, p. 1144.
# Montell, C., “Thermosensation: Hot Findings Make TRPNs Very Cool.” Current Biology, Jun. 17, 2003, Vol. 13, No. 12,

pp. R476–R478.
° Dedov, V. N., et al., “Gingerols: A Novel Class of Vanilloid Receptor (VR1) Agonists.” British Journal of Pharmacology,

2002, Vol. 137, pp. 793–798.
§ Montell, C., op. cit.
¶ Sternin, V., and Dorè, I, Caviar: The Resource Book. Moscow: Cultura, 1993, in McGee, H., On Food and Cooking: The

Science and Lore of the Kitchen. New York: Scribner, 2004.

43°C.

The molecules of the active ingredient in these spicy hot peppers
do not dissolve in water because they do not have electric dipole
moments. (Stockbyte Platinum/Getty Images.)
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Summary

1. Gauss’s law is a fundamental law of physics that is equivalent to Coulomb’s law for static
charges.

2. For highly symmetric charge distributions, Gauss’s law can be used to calculate the
electric field.

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Electric Field for a Continuous (Coulomb’s law) 22-1b
Charge Distribution

where for a charge distributed throughout a volume, for a charge
distributed on a surface, and for a charge distributed along a line.

2. Electric Flux 22-13

3. Gauss’s Law 22-16

The net outward electric flux through a closed surface equals the net charge within the sur-
face divided by 

4. Coulomb Constant and Electric 
Constant (Permittivity of Free Space)

22-7

5. Coulomb’s Law and Gauss’s Law 22-5

22-16

6. Discontinuity of At a surface having a surface charge density the component of the electric field normal to
the surface is discontinuous by 

22-20

7. Charge on a Conductor In electrostatic equilibrium, the charge density is zero throughout the material of the con-
ductor. All excess or deficit charge resides on the surfaces of the conductor.

8. Just Outside a Conductor The resultant electric field just outside the surface of a conductor is normal to the surface and
has the magnitude where is the local surface charge density on the conductor:

22-21

9. Electric Fields for Selected Uniform 
Charge Distributions

Of a line charge of infinite length 22-6

On the axis of a charged ring 22-8

On the axis of a charged disk 22-9Ez � sign(z) #
s
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TOPIC RELEVANT EQUATIONS AND REMARKS

Of a charged infinite plane 22-10

Of a charged thin spherical shell 22-17a

22-17b Er � 0   r � R

 Er �
1

4pP0

 
Q

r2  r � R

Ez � sign(z) #
s

2P0

Answers to Concept Checks

22-1 The in Gauss’s law is the electric field due to all
charges. However, the flux of the electric field due to all
the charges outside the surface equals zero, so the flux
of the electric field due to all charges equals the flux of
the field due to the charges inside the surface alone.

E
S

Answers to Practice Problems

22-1 For so which

means 

22-2 No. Symmetry dictates that is zero at whereas
the equation in step 3 gives a negative value for at

These contradictory results cannot both be valid.

22-3 The SI units for and are and m,
respectively. It follows that has units of

22-4

22-5 80%

z � a>22

(N # m2>C2)(C>m)(1>m) � N>C.
kl>R

N # m2>C2, C>m,Rk, l,

z � 0.
Ez

z � 0Ez

Ex � 0.

1
r2

�
1
r1

x � x2 , r2 � r1Ex � kla
1
r2

�
1
r1

b .

Problems

In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimate.

Interpret as significant all digits in numerical values that
have trailing zeros and no decimal points.

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired 
problems.

SSM

CONCEPTUAL PROBLEMS

1 • Figure 22-37 shows an L-shaped object that has sides
which are equal in length. Positive charge is distributed uni-
formly along the length of the
object. What is the direction of
the electric field along the
dashed line? Explain your
answer. SSM

45°

+++++++

+
+
+
+
+
+
+

F I G U R E  2 2 - 3 7

Problem 1

3 • True or false:
(a) The electric field due to a hollow uniformly charged thin spher-

ical shell is zero at all points inside the shell.
(b) In electrostatic equilibrium, the electric field everywhere inside

the material of a conductor must be zero.
(c) If the net charge on a conductor is zero, the charge density must

be zero at every point on the surface of the conductor.

4 • If the electric flux through a closed surface is zero, must
the electric field be zero everywhere on that surface? If not, give a
specific example. From the given information can the net charge in-
side the surface be determined? If so, what is it?

5 • True or false:
(a) Gauss’s law holds only for symmetric charge distributions.
(b) The result that everywhere inside the material of a con-

ductor under electrostatic conditions can be derived from
Gauss’s law.

6 •• A single point charge is located at the center of both an
imaginary cube and an imaginary sphere. How does the electric
flux through the surface of the cube compare to that through the
surface of the sphere? Explain your answer.

q

E � 0

2 • Positive charge is distributed uniformly along the en-
tire length of the axis, and negative charge is distributed uni-
formly along the entire length of the axis. The charge per unit
length on the two axes is identical, except for the sign.
Determine the direction of the electric field at points on the lines
defined by and Explain your answer. y � �x.y � x

y
x
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7 •• An electric dipole is completely inside a closed imagi-
nary surface and there are no other charges. True or false:
(a) The electric field is zero everywhere on the surface.
(b) The electric field is normal to the surface everywhere on the

surface.
(c) The electric flux through the surface is zero.
(d) The electric flux through the surface could be positive or negative.
(e) The electric flux through a portion of the surface might not 

be zero.

8 •• Explain why the electric field strength increases lin-
early with , rather than decreases inversely with , between the
center and the surface of a uniformly charged solid sphere.

r2r

SSM

9 •• Suppose that the total charge on the conducting
spherical shell in Figure 22-38 is zero. The negative point charge
at the center has a magnitude given by What is the direction
of the electric field in the following regions? (a)
(b) (c) and Explain your answer.

10 •• The conducting shell in Figure 22-38 is grounded, and
the negative point charge at the center has a magnitude given by

Which of the following statements is correct?
(a) The charge on the inner surface of the shell is and the

charge on the outer surface is 
(b) The charge on the inner surface of the shell is and the

charge on the outer surface is zero.
(c) The charge on both surfaces of the shell is 
(d) The charge on both surfaces of the shell is zero.

�Q.

�Q
�Q.

�Q

Q.

SSMr � R2 .R2 � r � R1 ,
r � R1,

Q.

11 •• The conducting shell in
Figure 22-38 is grounded, and the
negative point charge at the center
has a magnitude given by What is
the direction of the electric field in
the following regions? (a) 
(b) (c) and 
Explain your answers.

ESTIMATION AND 
APPROXIMATION

12 •• In the chapter, the expression for the electric field due
to a uniformly charged disk (on its axis), was derived. At any
location on the axis, the field magnitude is given by 

At large distances it was

shown that this equation approaches Very near the
disk the field strength is approximately that of an infi-
nite plane of charge or Suppose you have a disk of ra-
dius 2.5 cm that has a uniform surface charge density of

Use both the exact and approximate expression from
those given above to find the electric field strength on the axis at
distances of (a) 0.010 cm, (b) 0.040 cm, and (c) 5.0 m. Compare the
two values in each case and comment on how well the approxi-
mations work in their region of validity.

CALCULATING FROM
COULOMB’S LAW

13 • A uniform line charge that has a linear charge density 
equal to is on the axis between and x � 5.0 m.x � 0x3.5 nC>m

l

E
S

3.6 mC>m2.

ƒE ƒ � 2pks.
( ƒz ƒ V R),

E � kQ>z2.

( ƒz ƒ W R),2pks c1 � a1 �
R2

z2 b
�1>2

d .

ƒE ƒ  �

r � R2 .R2 � r � R1 ,
r � R1 ,

Q.

(a) What is its total charge? Find the electric field on the axis
at (b) (c) and (d) (e) Estimate
the electric field at using the approximation that the
charge is a point charge on the axis at and compare
your result with the result calculated in Part (d). (To do this, you
will need to assume that the values given in this problem state-
ment are valid to more than two significant figures.) Is your ap-
proximate result greater or smaller than the exact result? Explain
your answer.

14 • Two infinite nonconducting sheets of charge are parallel
to each other, with sheet A in the plane and sheet B in
the plane. Find the electric field in the region

in the region and between the sheets for
the following situations. (a) When each sheet has a uniform surface
charge density equal to and (b) when sheet A has a uni-
form surface charge density equal to and sheet B has a
uniform surface charge density equal to (c) Sketch the
electric field line pattern for each case.

15 • A charge of is uniformly distributed on a ring of
radius 8.5 cm. Find the electric field strength on the axis at distances
of (a) 1.2 cm, (b) 3.6 cm, and (c) 4.0 m from the center of the ring.
(d) Find the field strength at 4.0 m using the approximation that the
ring is a point charge at the origin, and compare your results for
Parts (c) and (d). Is your approximate result a good one? Explain
your answer.

16 • A nonconducting disk of radius lies in the plane
with its center at the origin. The disk has a uniform surface charge
density Find the value of for which Note that at
this distance, the magnitude of the electric field strength is half the
electric field strength at points on the axis that are very close to
the disk.

17 • A ring that has radius a lies in the plane with its
center at the origin. The ring is uniformly charged and has a
total charge Find on the axis at (a) (b)
(c) (d) and (e) (f) Use your results to plot

versus for both positive and negative values of (Assume
that these distances are exact.)

18 • A nonconducting disk of radius a lies in the 
plane with its center at the origin. The disk is uniformly charged
and has a total charge Find on the axis at (a)
(b) (c) (d) and (e) (f) Use your re-
sults to plot versus for both positive and negative values of

(Assume that these distances are exact.)

19 •• SPREADSHEET (a) Using a spreadsheet program or
graphing calculator, make a graph of the electric field strength on
the axis of a disk that has a radius and a surface charge
density (b) Compare your results to the results
based on the approximation (the formula for the electric
field strength of a uniformly charged infinite sheet). At what dis-
tance does the solution based on approximation differ from the
exact solution by 10.0 percent?

20 •• (a) Show that the electric field strength on the axis of a
ring charge of radius a has maximum values at 
(b) Sketch the field strength versus for both positive and nega-
tive values of (c) Determine the maximum value of 

21 •• A line charge that has a uniform linear charge density 
lies along the axis from to where Show that
the component of the electric field at a point on the axis is given 

by where 

and y � 0.

u1 � tan�1
 (x1>y), u2 � tan�1

 (x2>y),Ex �
kl
y

(cos u2 � cos u1)

yx
x1 � x2 .x � x2x � x1x

l

E.z.
zE

z � �a>22.
E

E � 2pks
s � 0.500 nC>m2.

a � 30.0 cm

z.
zEz

z � 2a.z � a,z � 0.7a,z � 0.5a,
z � 0.2a,zEzQ.

z � 0

SSM

z.zEz

z � 2a.z � a,z � 0.7a,
z � 0.5a,z � 0.2a,zEzQ.

z � 0

x

Ez � s>(4P0).zs.

z � 0R

2.75 mC

�3.0 mC>m2.
�3.0 mC>m2

�3.0 mC>m2

x � �2.0 m,x � �2.0 m,
x � �2.0 m

x � �2.0 m

SSM

x � 2.5 m,x
x � 250 m,

x � 250 m.x � 9.0 m,x � 6.0 m,
x

R1

R2

–Q
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22 •• A ring of radius a has a charge distribution on it that
varies as as shown in Figure 22-39. (a) What is the di-
rection of the electric field at the center of the ring? (b) What is the
magnitude of the field at the center of the ring?

l(u) � l0 sin u,
and the other is at (a) What is the elec-

tric flux through each end? (b) What is the electric flux through
the curved surface of the cylinder? (c) What is the electric flux
through the entire closed surface? (d) What is the net charge
inside the cylinder?

30 • Careful measurement of the electric field at the
surface of a black box indicates that the net outward electric 
flux through the surface of the box is (a) What is
the net charge inside the box? (b) If the net outward electric 
flux through the surface of the box were zero, could you con-
clude that there were no charges inside the box? Explain your
answer.

31 • A point charge is at the center of an
imaginary sphere that has a radius equal to 0.500 m. (a) Find the
surface area of the sphere. (b) Find the magnitude of the electric
field at all points on the surface of the sphere. (c) What is the flux
of the electric field through the surface of the sphere? (d) Would
your answer to Part (c) change if the point charge were moved so
that it was inside the sphere but not at its center? (e) What is the flux
of the electric field through the surface of an imaginary cube that
has 1.00-m-long edges and encloses the sphere?

32 • What is the electric flux through one side of a cube that
has a single point charge of placed at its center? Hint: You
do not need to integrate any equations to get the answer.

33 • A single point charge is placed at the center of an ima-
ginary cube that has 20-cm-long edges. The electric flux out of one
of the cube’s sides is How much charge is at the
center?

34 •• Because the formulas for Newton’s law of gravity and for
Coulomb’s law have the same inverse-square dependence on dis-
tance, a formula analogous to the formula for Gauss’s law can be
found for gravity. The gravitational field at a location is the force
per unit mass on a test mass placed at that location. (Then, for a
point mass at the origin, the gravitational field at some position 
is Compute the flux of the gravitational field
through a spherical surface of radius centered at the origin, and ver-
ify that the gravitational analog of Gauss’s law is 

35 •• An imaginary right circular cone (Figure 22-40) that has a
base angle and a base radius is in charge free region that has
a uniform electric field (field lines are vertical and parallel to the
cone’s axis). What is the ratio of the number of field lines per unit
area penetrating the base to the number of field lines per unit area
penetrating the conical surface of the cone? Use Gauss’s law in your
answer. (The field lines in the
figure are only a representa-
tive sample.)

36 •• In the atmosphere
and at an altitude of 250 m,
you measure the electric field
to be directed down-
ward, and you measure the
electric field to be 
directed downward at an alti-
tude of 400 m. Calculate the
volume charge density of
the atmosphere in the region
between altitudes of 250 m
and 400 m, assuming it to be
uniform. (You may neglet the
curvature of Earth. Why?)

170 N>C

150 N>C

E
S

Ru

fnet � �4pGminside .
R

gS � �(Gm>r2)rn.)
rngm

m0

gS

SSM

�1.50 kN # m2>C.

�3.00 mC

(q � �2.00 mC)

6.0 kN # m2>C.

SSM

x � �10 cm.x � �10 cm

23 •• A line of charge that has uniform linear charge 
density lies on the axis from to Show that the 
component of the electric field at a point on the axis is given by

24 ••• Calculate the electric field a distance from a uniformly
charged infinite flat nonconducting sheet by modeling the sheet as
a continuum of infinite straight lines of charge.

25 •• Calculate the electric field a distance from a uniformly
charged infinite flat nonconducting sheet by modeling the sheet as
a continuum of infinite circular rings of charge.

26 ••• A thin hemispherical shell of radius has a uniform sur-
face charge Find the electric field at the center of the base of the
hemispherical shell.

GAUSS’S LAW

27 • A square that has 10-cm-long edges is centered on the 
axis in a region where there exists a uniform electric field given by

(a) What is the electric flux of this electric field
through the surface of a square if the normal to the surface is in the
+ direction? (b) What is the electric flux through the same square
surface if the normal to the surface makes a angle with the 
axis and an angle of with the axis?

28 • A single point charge is fixed at the ori-
gin. An imaginary spherical surface of radius 3.00 m is centered on
the axis at (a) Sketch electric field lines for this charge
(in two dimensions) assuming twelve equally spaced field lines in
the plane leave the charge location, with one of the lines in
the direction. Do any lines enter the spherical surface? If so,
how many? (b) Do any lines leave the spherical surface? If so, how
many? (c) Counting the lines that enter as negative and the ones
that leave as positive, what is the net number of field lines that pen-
etrate the spherical surface? (d) What is the net electric flux through
this spherical surface?

29 • An electric field is given by 
where sign equals if if and if 
A cylinder of length 20 cm and radius 4.0 cm has its center at the
origin and its axis along the axis such that one end is atx

x � 0.�1x � 0,x � 0, 0�1(x)
E
S

� sign(x) # (300 N>C)in,

�x
xy

x � 5.00 m.x

(q � �2.00 mC)

z90°
y60°

x

E
S

� (2.00 kN>C)in.

x

s.
R

SSM

z

z

Ey �
kl
y

 
a2y2 � a2

, y � 0.

y
yx � a.x � 0xl

R

E

θ
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θ

λ

x

y
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GAUSS’S LAW APPLICATIONS IN
SPHERICAL SYMMETRY SITUATIONS

37 • A thin nonconducting spherical shell of radius has a
total charge that is uniformly distributed on its surface. A second,
larger thin nonconducting spherical shell of radius that is coax-
ial with the first has a charge that is uniformly distributed on its
surface. (a) Use Gauss’s law to obtain expressions for the electric
field in each of the three regions: and 
(b) What should the ratio of the charges and the relative signs
for and be for the electric field to be zero throughout the region

(c) Sketch the electric field lines for the situation in Part
(b) when is positive.

38 • A nonconducting thin spherical shell of radius 6.00 cm
has a uniform surface charge density of (a) What is the
total charge on the shell? Find the electric field at the following dis-
tances from the sphere’s center: (b) 2.00 cm, (c) 5.90 cm, (d) 6.10 cm,
and (e) 10.0 cm.

39 •• A nonconducting sphere of radius 6.00 cm has a
uniform volume charge density of (a) What is the 
total charge on the sphere? Find the electric field at the following
distances from the sphere’s center: (b) 2.00 cm, (c) 5.90 cm, 
(d) 6.10 cm, and (e) 10.0 cm.

40 •• Consider the solid conducting sphere and the concentric
conducting spherical shell in Figure 22-41. The spherical shell has
a charge The solid sphere has a charge . (a) How much
charge is on the outer surface and how much charge is on the inner
surface of the spherical shell? (b) Suppose a metal wire is now con-
nected between the solid sphere and the shell. After electrostatic
equilibrium is reestablished, how much charge is on the solid
sphere and on each surface of the spherical shell? Does the electric
field at the surface of the solid sphere change when the wire is con-
nected? If so, in what way? (c) Suppose we return to the conditions
in Part (a) , with on the solid sphere and on the spheri-
cal shell. We next connect the solid sphere to ground with a metal
wire, and then disconnect it. Then how much total charge is on the
solid sphere and on each surface of the spherical shell?

�7Q�2Q

�2Q�7Q.

SSM

450 nC>m3.

9.00 nC>m2.

q1

r � R2 ?
q2q1

q1>q2

r � R2 .r � R1 , R1 � r � R2 ,

q2

R2

q1

R1

–7Q

+2Q
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Problem 40

41 •• A nonconducting solid sphere of radius 10.0 cm has a
uniform volume charge density. The magnitude of the electric field
at 20.0 cm from the sphere’s center is (a) What is
the sphere’s volume charge density? (b) Find the magnitude of the
electric field at a distance of 5.00 cm from the sphere’s center.

42 •• A nonconducting solid sphere of radius has a volume
charge density that is proportional to the distance from the center.
That is, for where is a constant. (a) Find the total
charge on the sphere. (b) Find the expressions for the electric field
inside the sphere and outside the sphere . (c) Sketch
the magnitude of the electric field as a function of the distance 
from the sphere’s center.

r
(r � R)(r � R)

Ar 
 R,r � Ar

R

1.88 	 103 N>C.

43 •• A sphere of radius has volume charge density
for where is a constant and for 

(a) Find the total charge on the sphere. (b) Find the expressions
for the electric field inside and outside the charge distribution.
(c) Sketch the magnitude of the electric field as a function of the
distance from the sphere’s center.

44 •• A sphere of radius has volume charge density
for where is a constant and for 

(a) Find the total charge on the sphere. (b) Find the expressions
for the electric field inside and outside the charge distribution.
(c) Sketch the magnitude of the electric field as a function of the
distance from the sphere’s center.

45 ••• A nonconducting spherical shell of inner radius and
outer radius has a uniform volume charge density (a) Find the
total charge on the shell. (b) Find expressions for the electric field
everywhere.

GAUSS’S LAW APPLICATIONS IN
CYLINDRICAL SYMMETRY
SITUATIONS

46 • CONTEXT-RICH, ENGINEERING APPLICATION For your se-
nior project, you are designing a Geiger tube for detecting radia-
tion in the nuclear physics laboratory. This instrument will consist
of a long metal cylindrical tube that has a long straight metal wire
running down its central axis. The diameter of the wire will be
0.500 mm and the inside diameter of the tube will be 4.00 cm. The
tube is to be filled with a dilute gas in which an electrical discharge
(breakdown of the gas) occurs when the electric field reaches

Determine the maximum linear charge density on
the wire if breakdown of the gas is not to happen. Assume that the
tube and the wire are infinitely long.

47 ••• In Problem 46, suppose ionizing radiation produces an
ion and an electron at a distance of 1.50 cm from the long axis of
the central wire of the Geiger tube. Suppose that the central wire
is positively charged and has a linear charge density equal to

(a) In this case, what will be the electron’s speed as it
impacts the wire? (b) How will the electron’s speed compare to the
ion’s final speed when it impacts the outside cylinder? Explain
your answer.

48 •• Show that the electric field due to an infinitely long, uni-
formly charged thin cylindrical shell of radius a having a surface
charge density is given by the following expressions: for

and for 

49 • A thin cylindrical shell of length 200 m and radius
6.00 cm has a uniform surface charge density of 
(a) What is the total charge on the shell? Find the electric field at
the following radial distances from the long axis of the cylinder:
(b) 2.00 cm, (c) 5.90 cm, (d) 6.10 cm, and (e) 10.0 cm. (Use the re-
sults of Problem 48.)

50 •• An infinitely long nonconducting solid cylinder of radius
a has a uniform volume charge density of Show that the elec-
tric field is given by the following expressions: 
for and for where is the dis-
tance from the long axis of the cylinder.

51 •• A solid cylinder of length 200 m and radius 6.00 cm has 
a uniform volume charge density of (a) What is the total
charge of the cylinder? Use the formulas given in Problem 50 to cal-
culate the electric field at a point equidistant from the ends at the
following radial distances from the cylindrical axis: (b) 2.00 cm,
(c) 5.90 cm, (d) 6.10 cm, and (e) 10.0 cm. SSM

300 nC>m3.

RR � a,ER � r0 a2>(2P0 R)0 
 R � a
ER � r0 R>(2P0)

r0 .

9.00 nC>m2.

R � a.ER � sa>(P0 R)0 
 R � a
E � 0s

76.5 pC>m.

5.50 	 106 N>C.

r.R2

R1

r

r � R.r � 0Cr � R,r � C>r2
R

SSMr

r � R.r � 0Br � R,r � B>r
R
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60 • A charge of is uniformly distributed on a thin
square sheet of nonconducting material of edge length 20.0 cm.
(a) What is the surface charge density of the sheet? (b) What are the
magnitude and direction of the electric field next to the sheet and
proximate to the center of the sheet?
61 • A conducting spherical shell that has zero net charge
has an inner radius and an outer radius A positive point
charge is placed at the center of the shell. (a) Use Gauss’s law
and the properties of conductors in electrostatic equilibrium to
find the electric field in the three regions: 
and where is the distance from the center. (b) Draw the
electric field lines in all three regions. (c) Find the charge density
on the inner surface and on the outer surface of
the shell.
62 •• The electric field just above the surface of Earth has been
measured to typically be pointing downward. (a) What is
the sign of the net charge on Earth’s surface under typical condi-
tions? (b) What is the total charge on Earth’s surface implied by this
measurement?
63 •• A positive point charge of is at the center of a con-
ducting spherical shell that has a net charge of zero, an inner radius
equal to 60 cm, and an outer radius equal to 90 cm. (a) Find the
charge densities on the inner and outer surfaces of the shell and the
total charge on each surface. (b) Find the electric field everywhere.
(c) Repeat Part (a) and Part (b) with a net charge of placed
on the shell.
64 •• If the magnitude of an electric field in air is as great as

the air becomes ionized and begins to conduct elec-
tricity. This phenomenon is called dielectric breakdown. A charge of

is to be placed on a conducting sphere. What is the minimum
radius of a sphere that can hold this charge without breakdown?
65 •• A thin square conducting sheet that has 5.00-m-long
edges has a net charge of The square is in the plane
and is centered at the origin. (Assume the charge on each surface
is uniformly distributed.) (a) Find the charge density on each side
of the sheet and find the electric field on the axis in the region

(b) A thin but infinite nonconducting sheet that has a
uniform charge density of is now placed in the

plane. Find the electric field on the x axis on each side
of the square sheet in the region Find the charge
density on each surface of the square sheet.

GENERAL PROBLEMS

66 •• Consider the concentric metal sphere and spherical shells
that are shown in Figure 22-43. The innermost is a solid sphere that
has a radius A spherical shell surrounds the sphere and has anR1 .

SSM

ƒx ƒ V 2.50 m.
x � �2.50 m

2.00 mC>m2
ƒx ƒ V 5.00 m.

x

x � 080.0 mC.

18 mC

3.0 � 106 N>C,

SSM

�3.5 mC

2.5 mC

150 N>C

(r � R2)(r � R1)

rr � R2,
0 � r � R1 , R1 � r � R2 ,

q
R2 .R1

�6.00 nC

R5
R4

R1

R2

R3
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Problem 66

52 •• Consider two infinitely long, coaxial thin cylindrical
shells. The inner shell has a radius and has a uniform surface
charge density of and the outer shell has a radius and has a
uniform surface charge density of (a) Use Gauss’s law to find ex-
pressions for the electric field in the three regions: 

and where is the distance from the axis.
(b) What is the ratio of the surface charge densities and their
relative signs if the electric field is to be zero everywhere outside the
largest cylinder? (c) For the case in Part (b), what would be the elec-
tric field between the shells? (d) Sketch the electric field lines for the
situation in Part (b) if is positive.
53 •• Figure 22-42 shows a portion of an infinitely long, con-
centric cable in cross section. The inner conductor has a linear
charge density of and the outer conductor has no net
charge. (a) Find the electric field for all values of where is the
perpendicular distance from the common axis of the cylindrical
system. (b) What are the surface charge densities on the inside and
the outside surfaces of the outer conductor?

RR,
6.00 nC>m

s1

s2>s1

RR � a2,a1 � R � a2 ,
0 � R � a1 ,

s2 .
a2s1 ,

a1

l = 6 nC/m 3 cm 9 cm 13 cm

R
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Problems 53 and 57

54 •• An infinitely long nonconducting solid cylinder of radius a
has a nonuniform volume charge density. This density varies linearly
with the perpendicular distance from its axis, according to

where is a constant. (a) Show that the linear charge den-
sity of the cylinder is given by (b) Find expressions for
the electric field for and 
55 •• An infinitely long nonconducting solid cylinder of radius a
has a nonuniform volume charge density. This density varies with 
the perpendicular distance from its axis, according to 
where is a constant. (a) Show that the linear charge density of the
cylinder is given by (b) Find expressions for the electric
field for and 
56 ••• An infinitely long, nonconducting cylindrical shell of
inner radius and outer radius has a uniform volume charge
density Find expressions for the electric field everywhere.
57 ••• The inner cylinder of Figure 22-42 is made of nonconduct-
ing material and has a volume charge distribution given by

where The outer cylinder is metallic,
and both cylinders are infinitely long. (a) Find the charge per unit
length (that is, the linear charge density) on the inner cylinder.
(b) Calculate the electric field for all values of 

ELECTRIC CHARGE AND FIELD
AT CONDUCTOR SURFACES

58 • An uncharged penny is in a region that has a uniform
electric field of magnitude directed perpendicular to its
faces. (a) Find the charge density on each face of the penny, assum-
ing the faces are planes. (b) If the radius of the penny is 1.00 cm, find
the total charge on one face.
59 • A thin metal slab has a net charge of zero and has square
faces that have 12-cm-long sides. It is in a region that has a uniform
electric field that is perpendicular to its faces. The total charge in-
duced on one of the faces is 1.2 nC. What is the magnitude of the
electric field?

1.60 kN>C

SSMR.

C � 200 nC>m2.r(R) � C>R,

r.
a2a1

SSMR � a.R � a
l � pba4>2.

b
r(R) � bR2,

R,

R � a.R � a
l � 2pba3>3.

br(R) � bR,
R,
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inner radius and an outer radius The sphere and the shell are
both surrounded by a second spherical shell that has an inner radius

and an outer radius None of the three objects initially have a
net charge. Then, a negative charge is placed on the inner
sphere and a positive charge is placed on the outermost shell.
(a) After the charges have reached equilibrium, what will be the di-
rection of the electric field between the inner sphere and the middle
shell? (b) What will be the charge on the inner surface of the mid-
dle shell? (c) What will be the charge on the outer surface of the
middle shell? (d) What will be the charge on the inner surface of the
outermost shell? (e) What will be the charge on the outer surface of
the outermost shell? (f) Plot as a function of for all values of 
67 •• A large, flat, nonconducting, nonuniformly charged sur-
face lies in the plane. At the origin, the surface charge density
is A small distance away from the surface on the pos-
itive axis, the component of the electric field is 
What is a small distance away from the surface on the negative 
axis?
68 •• An infinitely long line charge that has a uniform linear
charge density equal to lies parallel to the axis at

A positive point charge that has a magnitude equal to
is located at Find the electric field

at 
69 •• A thin, nonconducting, uniformly charged spherical
shell of radius (Figure 22-44a) has a total positive charge of A
small circular plug is removed from the surface. (a) What are the
magnitude and direction of the electric field at the center of the
hole? (b) The plug is now put back in the hole (Figure 22-44b). Using
the result of Part (a), find the electric force acting on the plug.
(c) Using the magnitude of the force, calculate the “electrostatic
pressure” (force/unit area) that tends to expand the sphere. SSM

Q.R

y � 1.50 m.x � 2.00 m,
y � 2.00 m.x � 1.00 m,1.30 mC

x � �2.00 m.
y�1.50 mC>m

SSM

xEx

4.65 	 105 N>C.xx
�3.10 mC>m2.

x � 0

r.rE

�Q0

�Q0

R5 .R4

R3 .R2 0.25 cm from the plate on the right? (b) What is the electric field
between the plates a distance of 1.00 cm from the plate on the
left? (c) What is the electric field just to the left of the plate on
the left? (d) What is the electric field just to the right of the plate
on the right?

72 •• Two infinite nonconducting uniformly charged
planes lie parallel to each other and to the plane. One is at

and has a surface charge density of 
The other is at and has a surface charge density of

Find the electric field in the region: (a)
(b) and (c)

73 ••• A quantum-mechanical treatment of the hydrogen atom
shows that the electron in the atom can be treated as a smeared-out
distribution of negative charge of the form Here 
represents the distance from the center of the nucleus and a repre-
sents the first Bohr radius, which has a numerical value of 0.0529 nm.
Recall that the nucleus of a hydrogen atom consists of just one pro-
ton and treat this proton as a positive point charge. (a) Calculate 
using the fact that the atom is neutral. (b) Calculate the electric field
at any distance from the nucleus.

74 •• A uniformly charged ring has a radius , lies in a hori-
zontal plane, and has a negative charge given by A small par-
ticle of mass has a positive charge given by The small particle
is located on the axis of the ring. (a) What is the minimum value of

such that the particle will be in equilibrium under the action
of gravity and the electrostatic force? (b) If is twice the value
calculated in Part (a) , where will the particle be when it is in equi-
librium? Express your answer in terms of 

75 •• A long, thin, nonconducting plastic rod is bent into a cir-
cular loop that has a radius a. Between the ends of the rod a short gap
of length where remains. A positive charge of magnitude 
is evenly distributed on the loop. (a) What is the direction of the elec-
tric field at the center of the loop? Explain your answer. (b) What is
the magnitude of the electric field at the center of the loop?

76 •• A nonconducting solid sphere that is 1.20 m in diameter
and has its center on the axis at has a uniform volume
charge of density of Concentric with the sphere is a
thin nonconducting spherical shell that has a diameter of 2.40 m
and a uniform surface charge density of Calculate the
magnitude and direction of the electric field at (a)

(b) and (c)

77 •• An infinite nonconducting plane sheet of charge that has
a surface charge density lies in the 
plane. A second infinite nonconducting plane sheet of charge that
has a surface charge density of lies in the 
plane. Lastly, a nonconducting thin spherical shell that has a radius
of 1.00 m and its center in the plane at the intersection of the
two charged planes has a surface charge density of 
Find the magnitude and direction of the electric field on the axis
at (a) and (b)

78 •• An infinite nonconducting plane sheet lies in the
plane and has a uniform surface charge density of

An infinite nonconducting line charge of uniform lin-
ear charge density passes through the origin at an angle of

with the axis in the plane. A solid nonconducting sphere
of volume charge density and radius 0.800 m is cen-
tered on the axis at Calculate the magnitude and direc-
tion of the electric field in the plane at 

79 •• A uniformly charged, infinitely long line of negative
charge has a linear charge density of and is located on the axis.
A small positively charged particle that has a mass and a charge

is in a circular orbit of radius in the plane centered on the line
of charge. (a) Derive an expression for the speed of the particle.
(b) Obtain an expression for the period of the particle’s orbit. SSM

xyRq
m

z�l

y � 0.50 m.x � 1.50 m,z � 0
x � 1.00 m.x

�6.00 mC>m3
xyx45.0°

4.00 mC>m
�2.00 mC>m2.
x � 2.00 m

x � 2.50 m.x � 0.400 m
x

�3.00 mC>m2.
z � 0

x � 1.00 m�2.00 mC>m2

y � �0.600 m�3.00 mC>m2

x � 2.00 m, y � 3.00 m.x � 4.00 m, y � 1.10 m,y � 0,
x � 4.50 m,

�1.50 mC>m2.

�5.00 mC>m3.
x � 4.00 mx

Q� V a,�,

a.

q>m
q>m

q.m
�Q.
a

SSMr

r0 ,

rr(r) � �r0 e�2r>a.

x � 2.00 m.�2.00 m � x � 2.00 m,
x � �2.00 m6.00 mC>m2.

x � 2.00 m
�3.50 mC>m2.x � �2.00 m

yz

SSM

+ +
+

++

+

+++
+

+

++

+
+

+

+
+

+
+

+ +

+
+

+

+

+
+

+ +
+

+

Hole

Plug

+ +
+

++

+

+++
+

+

++

+
+

+
+

+
+

+

+
+

+

+
+

+

+

+
+

+ +
+

+

(b)(a)

F I G U R E  2 2 - 4 4 Problem 69

70 •• An infinite thin sheet in the plane has a uniform
surface charge density A second infinite thin
sheet has a uniform charge density and intersects
the plane at the axis and makes
an angle of with the plane, as
shown in Figure 22-45. Find the electric
field at (a) and
(b) y � 5.0 m.x � 6.0 m,

y � 2.0 mx � 6.0 m,

xz30°
zy � 0

s2 � �45 nC>m2
s1 � �65 nC>m2.

y � 0

30°

y

x

z

+

+
+

+ +
+

+σ2

σ1F I G U R E  2 2 - 4 5

Problem 70

71 ••• Two identical square parallel metal plates each have
an area of They are separated by 1.50 cm. They are both
initially uncharged. Now a charge of is transferred
from the plate on the left to the plate on the right and the charges
then establish electrostatic equilibrium. (Neglect edge effects.)
(a) What is the electric field between the plates at a distance of

�1.50 nC
500 cm2.
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80 •• A stationary ring of radius lies in the plane and has
a uniform positive charge A small particle that has mass and
a negative charge is located at the center of the ring. (a) Show
that if the electric field along the axis of the ring is propor-
tional to (b) Find the force on the particle as a function of 
(c) Show that if the particle is given a small displacement in the 
direction, it will perform simple harmonic motion. (d) What is the
frequency of that motion?

81 •• The charges and of Problem 80 are and
respectively, and the radius of the ring is 8.00 cm.

When the particle is given a small displacement in the direc-
tion, it oscillates about its equilibrium position at a frequency of
3.34 Hz. (a) What is the particle’s mass? (b) What is the fre-
quency if the radius of the ring is doubled to 16.0 cm and all
other parameters remain unchanged?

82 •• If the radius of the ring in Problem 80 is doubled
while keeping the linear charge density on the ring the same,
does the frequency of oscillation of the particle change? If so, by
what factor does it change?

83 ••• A uniformly charged nonconducting solid sphere of ra-
dius has its center at the origin and has a volume charge density
of (a) Show that at a point within the sphere a distance from the

center (b) Material is removed from the sphere leaving

a spherical cavity that has a radius and its center at 
on the axis (Figure 22-46). Calculate the electric field at points 1
and 2 shown in Figure 22-46. Hint: Model the sphere-with-cavity as two
uniform spheres of equal positive and negative charge densities.

x
x � bb � R>2
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F I G U R E  2 2 - 4 8 Problem 87

86 ••• A small Gaussian surface in the shape of a cube has faces
parallel to the and planes (Figure 22-47) and is in a region
in which the electric field is parallel to the axis. (a) Using the dif-
ferential approximation, show that the net electric flux of the electric

field out of the Gaussian surface is given by , where

is the volume enclosed by the Gaussian surface. (b) Using

Gauss’s law and the results of Part (a) show that where

is the volume charge density inside the cube. (This equation is the
one-dimensional version of the point form of Gauss’s law.)
r

�Ex

�x
�
r

P0

,

¢V

fnet �
�Ex

�x
 ¢V

x
yzxy, xz,

y

x

b

Hollow
cavity

12

R

F I G U R E  2 2 - 4 6 Problems 83 and 85

84 ••• Show that the electric field throughout the cavity of

Problem 83b is uniform and is given by 

85 ••• The cavity in Problem 83b is now filled with a uniformly
charged nonconducting material with a total charge of Calculate
the new values of the electric field at points 1 and 2 shown in
Figure 22-46.

Q.

E
S

�
r

3P0

 bin.

x

y

z

F I G U R E  2 2 - 4 7 Problem 86

88 ••• An electric dipole that has a dipole moment of is lo-
cated at a perpendicular distance from an infinitely long line
charge that has a uniform linear charge density Assume that the
dipole moment is in the same direction as the field of the line of
charge. Determine an expression for the electric force on the dipole.

l.
R

pS

87 ••• Consider a simple but surprisingly accurate model for
the hydrogen molecule: two positive point charges, each having
charge are placed inside a uniformly charged sphere of radius

which has a charge equal to The two point charges are
placed symmetrically, equidistant from the center of the sphere
(Figure 22-48). Find the distance from the center, where the net
force on either point charge is zero. SSM

a,

�2e.R,
�e,
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