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Preface

This manual serves as an introduction to the statistical software package Minitab.
It is targeted at students who are taking an introductory statistics course. The
manual covers the computational topics typically needed in such a course.
Minitab is easy to learn and use. The time students need to spend to learn

Minitab, and that instructors need to allocate to teach it, is relatively small.
Also Minitab serves as a perfectly adequate tool for many of the statistical
computational problems students will encounter throughout their undergradu-
ate education.
This manual can be used with either Minitab Version 15, Minitab Student

Version 14, Minitab Version 14 or Minitab Version 13 running under Windows.
The text is based on Minitab Version 15. The core of the manual is a discussion
of the menu commands while not neglecting to refer to the session commands,
as these are needed for certain problems. The material on session commands is
always at the end of each section and can be skipped if the reader will deÞnitely
not be using them. We have provided some exercises for each chapter.
The manual is divided into two parts. Part I is an introduction that provides

the necessary details to start using Minitab and, in particular, explains how to
use worksheets. We recommend reading Part I before starting to use Minitab.
Overall, the introductory Part I serves as a reference for most of the nonstatis-
tical commands in Minitab and is basically concerned with Data Management.
Part II introduces the statistical commands. The sequence of chapters fol-

lows the organization of a typical introductory statistics course. The Minitab
commands relevant to doing typical problems encountered in such a course are
introduced and their use illustrated. Each chapter concludes with a set of ex-
ercises. These are speciÞcally designed to ensure that the relevant Minitab
material has been understood.
This manual does not attempt a complete coverage of Minitab. Rather, we

introduce and discuss those concepts in Minitab that we feel are most relevant
for a student studying introductory statistics. While the manual�s primary goal
is to teach Minitab, generally we want to help develop strong data analytic
skills.
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For further information on Minitab software, contact:

Minitab Inc.
3081 Enterprise Drive

State College, PA 16801 USA
ph: 814.328.3280
fax: 814.238.4383

email: Info@minitab.com
URL: http://www.minitab.com
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1 Manual Overview and Conventions
Minitab is a software package for carrying out statistical, numerical, and graph-
ical calculations. This manual does not attempt to describe all the possible
implementations or the full extent of the package. We limit our discussion to
those features common to the most recent versions of Minitab running under the
Windows operating system. Version 15 refers to the latest version of Minitab
at the time of writing this manual, but we also make reference to Versions 13
and 14 when there are differences. This manual can be used with each version.
In this manual, special statistical or Minitab concepts will be highlighted in

italic font. You should be sure that you understand these concepts.
Primarily, we will be discussing the menu commands that are available in

Minitab. Menu commands are accessed by clicking the left button of the mouse
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on items in lists. We use a special notation for menu commands. For example,

A I B I C

is to be interpreted as left click the command A on the menu bar, then in the
list that drops down, left click the command B, and, Þnally, left click C. The
menu commands will be denoted in ordinary font (the actual appearance may
vary slightly depending on the version of Windows you use).
There are also session commands and subcommands that are typed by the

user rather than using the mouse. These will be denoted in bold font. Any
commands that we actually type, and the output obtained, will be denoted
in typewriter font, as will the names of any Þles used by Minitab, variables,
constants, and worksheets.
We recommend that whenever feasible, the reader use Minitab to do the

problems in your text. While many problems can be done by hand, you will
save a considerable amount of time and avoid errors by learning to use Minitab
effectively. We also recommend that you try out the Minitab commands as you
read about them, as this will ensure full understanding.

2 Accessing and Exiting Minitab
The Þrst thing you should do is Þnd out how to access the Minitab package.
This information will come from your instructor, system personnel, or from
your software documentation if you have purchased Minitab to run on your own
computer.
In most cases, you will double click an icon, such as that shown in Display

I.1, that corresponds to the Minitab program. Alternatively, you can use the
Start button and click on Minitab in the Programs list. In this case, the program
opens with aMinitab window, such as the one shown in Display I.2. The Minitab
window is divided into two sub-windows with the upper window called the
Session window and the lower one called the Data window.
Left clicking the mouse anywhere on a particular window brings that window

to the foreground�i.e., makes it the active window�and the border at the top
of the window turns dark blue. For example, clicking in the Session window will
make that window active. Alternatively, you can use the command W

¯
indow I

S
¯
ession in the menu bar at the top of the Minitab window to make this window
active.

Display I.1: Minitab icon.
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Display I.2: Minitab window.

You may not see the

MTB >

prompt in the Session window, and for some things described in this manual it
is important that you do so. You can ensure that this prompt always appears
in your Session window by using T

¯
ools I O

¯
ptions I Session Window I Sub-

mitting Commands, clicking on the Enable radio button and then clicking on
OK. Without the MTB > prompt, you cannot type commands to be executed in
the Session window.
In the session window, Minitab commands are typed after the

MTB >

prompt and executed when you hit the Enter or Return key. For example, the
command exit takes you out of your Minitab session and returns you to the
system prompt or operating system. Otherwise, you can access commands using
the menu bar (Display I.3) that resides at the top of the Minitab window. For
example, you can access the exit command using F

¯
ile I Ex

¯
it. In many circum-

stances, using the menu commands to do your analyses is easy and convenient,
although there are certain circumstances where typing the session commands is
necessary. You can also exit by clicking on the × symbol in the upper right-hand
corner of the Minitab window. When you exit, you are prompted by Minitab in
a dialog window with something like the question, �Save changes to the Project
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�Untitled� before closing?� You can safely answer no to this question unless you
are in fact using the Projects feature in Minitab as described in Appendix A.
Later, we will discuss how to save the contents of a Data window before exiting.
This is something you will commonly want to do.

Display I.3: Menu bar.

Immediately below the menu bar in the Minitab window is the taskbar. The
taskbar consists of various icons that provide a shortcut method for carrying out
various operations by clicking on them. These operations can be identiÞed by
holding the cursor over each in turn, and it is a good idea to familiarize yourself
with these as they can save time. Of particular importance are the Cut, Copy,
and Paste icons, which are available when a Data window is active. When the
operation associated with an icon is not available, the icon is faded.
Minitab is an interactive program. By this we mean that you supply Minitab

with input data, or tell it where your input data is, and then Minitab responds
instantaneously to any commands you give telling it to do something with that
data. You are then ready to give another command. It is also possible to run
a collection of Minitab commands in a batch program; i.e., several Minitab
commands are executed sequentially before the output is returned to the user.
The batch version is useful when there is an extensive number of computations
to be carried out. You are referred to H

¯
elp on the menu bar if you want to use

this feature.

3 Files Used by Minitab
Minitab can accept input from a variety of Þles and write output to a variety of
Þles. Each Þle is distinguished by a Þle name and an extension that indicates
the type of Þle it is. For example, marks.mtw is the name of a Þle that would
be referred to as �marks� (note the single quotes around the Þle name) within
Minitab. The extension .mtw indicates that this is a Minitab worksheet. We
describe what a worksheet is in Section I.5. This Þle is stored somewhere on the
hard drive of a computer as a Þle called marks.mtw.
There are other Þles that you will want to access from outside Minitab,

perhaps to print them out on a printer. In such a case, you have to give the
relevant system print command together with the full path name of the Þle you
wish to print. As various implementations of Minitab differ as to where these
Þles are stored on the hard drive, you will have to determine this information
from your instructor or documentation or systems person. For example, in
Windows the full path name of the worksheet Þle marks.mtw could be

C:\minitabdata\marks.MTW

or something similar. This path name indicates that the Þle marks.mtw is stored
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on the C hard drive in the directory called \minitabdata, which I created. We
will discuss several different types of Þles in this manual.
It is generally best to name your Þles so that the Þle name reßects its con-

tents. For example, the Þle name marks may refer to a data set composed of
student marks in a number of courses.

4 Getting Help
At times, you may want more information about a command or some other
aspect of Minitab than this manual provides, or you may wish to remind yourself
of some detail that you have partially forgotten. Minitab contains an online
manual that is very convenient. You can access this information directly by
clicking on H

¯
elp in the Menu bar and using the table of contents (via H

¯
elp

I H
¯
elp) or doing a search (via Search I Help

¯
) of the manual for a particular

concept.
From the

MTB >

prompt, you can use the help command for this purpose. Typing help followed
by the name of the command of interest and hitting Enter will cause Minitab
to produce a window containing relevant output. For example, asking for help
on the command help itself via the command

MTB >help help

will give you the table of contents of the online help manual with help high-
lighted. The help command should be used to Þnd out about session commands.

5 The Worksheet
The basic structural component of Minitab is the worksheet . Basically, the
worksheet can be thought of as a big rectangular array, or matrix, of cells
organized into rows and columns as in the Data window of Display I.2. Each cell
holds one piece of data. This piece of data could be a number, i.e., numeric data,
or it could be a sequence of characters, such as a word or an arbitrary sequence
of letters and numbers, i.e., text data. Data often comes as numbers, such as
1.7, 2.3, . . . , but sometimes it comes in the form of a sequence of characters,
such as black, brown, red, etc. Typically, sequences of characters are used as
identiÞers in classiÞcations for some variable of interest; for example, color,
gender. A piece of text data can be up to 80 characters in length in Minitab.
Minitab also allows for date data, which is data especially formatted to indicate
a date, for example, 3/4/97. We will not discuss date data.
If possible, try to avoid using text data with Minitab; i.e., make sure all the

values of a variable are numbers, as dealing with text data in Minitab is more
difficult. For example, denote colors by numbers rather than by names. Still,
there will be applications where data comes to you as text data�for example, in
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a computer Þle�and it is too extensive to convert to numeric data. So we will
discuss how to input text data into a Minitab worksheet, but we recommend
that in such cases you convert text data to numeric data, using the methods of
Section C.3 in Appendix C, once it has been input.
Display I.4 provides an example of part of a worksheet. Notice that the

columns are labeled C1, C2, etc., and the rows are labeled 1, 2, 3, etc. We will
refer to the worksheet depicted in Display I.4 as the marks worksheet hereafter
and will use it throughout Part I to illustrate various Minitab commands and
operations.

Display I.4: The marks worksheet.

Data arises from the process of taking measurements of variables in some
real-world context. For example, in a population of students, suppose that we
are conducting a study of academic performance in a Statistics course. Specif-
ically, suppose that we want to examine the relationship between grades in
Statistics, grades in a Calculus course, grades in a Physics course, and gender.
So we collect the following information for each student in the study: student
number, grade in Statistics, grade in Calculus, grade in Physics, and gender.
Therefore, we have Þve variables�student number and the grades in the three
subjects are numeric variables, and gender is a text variable. Let us further
suppose that there are ten students in the study.
Display I.4 gives a possible outcome from collecting the data in such a study.

Column C1 contains the student number (note that this is a categorical vari-
able even though it is a number). The student number primarily serves as an
identiÞer so that we can check that the data has been entered correctly. This is
something you should always do as a Þrst step in your analysis. Columns C2�
C4 contain the student grades in their Statistics, Calculus, and Physics courses
and column C5 contains the gender data. Notice that a column contains the
values collected for a single variable, and a row contains the values of all the
variables for a single student. Sometimes, a row is referred to as an observation
or case. Observe that the data for this study occupies a 10× 5 subtable of the
full worksheet. All of the other blank entries of the worksheet can be ignored,
as they are undeÞned.
There will be limitations on the number of columns and rows you can have in

your worksheet, and this depends on the particular implementation of Minitab



Minitab for Data Management 9

you are using. So if you plan to use Minitab for a large problem, you should check
with the system person or further documentation to see what these limitations
are. For example, in Minitab 15 there is a limitation of 4000 columns and 107

rows.
Associated with a worksheet is a table of constants. Typically, these are

numbers that you want to use in some arithmetical operation applied to every
value in a column. For example, you may have recorded heights of people in
inches and want to convert these to heights in centimeters. So you must multiply
every height by the value 2.54. The Minitab constants are labeled K1, K2, etc.
To continue with the above problem, we might assign the value 2.54 to K1. In
Section I.7.4, we show how to make such an assignment, and in Section I.10.1
we show how to multiply every entry in a column by this value.
There is an additional structure in Minitab beyond the worksheet called

the project . A project can have multiple worksheets associated with it. Also,
a project can have associated with it various graphs and records of the com-
mands you have typed and the output obtained while working on the worksheets.
Projects, which are discussed in Appendix A, can be saved and retrieved for later
work.

6 Minitab Commands
We will now begin to introduce various Minitab commands to get data into a
worksheet, edit a worksheet, perform various operations on the elements of a
worksheet, and save and access a saved worksheet. Before we do, however, it is
useful to know something about the basic structure of all Minitab commands.
Associated with every command is, of course, its name, as in F

¯
ile I Ex

¯
it and

H
¯
elp. Most commands also take arguments, and these arguments are column
names, constants, and sometimes Þle names.
Commands can be accessed by making use of the F

¯
ile, E

¯
dit, D

¯
ata, C

¯
alc,

S
¯
tat, G

¯
raph, and E

¯
ditor entries in the menu bar. Clicking any of these brings

up a list of commands that you can use to operate on your worksheet. The
lists that appear may depend on which window is active; for example, either a
Data window or the Session window. Unless otherwise speciÞed, we will always
assume that the Session window is active when discussing menu commands. If
a command name in a list is faded, then it is not available.
Typically, using a command from the menu bar requires the use of a dialog

box or dialog window that opens when you click on a command in the list.
These are used to provide the arguments and subcommands to the command
and specify where the output is to go. Dialog boxes have various boxes that
must be Þlled in to correctly execute a command. Clicking in a box that needs
to be Þlled in typically causes a variable list of all items in the active worksheet
that can be placed in that box to appear in the left-most box. Double clicking
on items in the variable list places them in the box, or, alternatively, you can
type them in directly. When you have Þlled in the dialog box and clicked OK,
the command is printed in the Session window and executed. Any output is
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also printed in the Session window. Dialog boxes have a Help button that can
be used to learn how to make the entries.
For example, suppose that we want to calculate the mean of column C2

in the worksheet marks. Then the command C
¯
alc I C

¯
olumn Statistics brings

up the dialog box shown in Display I.5. Notice that the radio button Sum is
Þlled in. Clicking the radio button labeled Mean results in this button being
Þlled in and the Sum button becoming empty. Whichever button is Þlled in will
result in that statistic being calculated for the relevant columns when we Þnally
implement the command by clicking OK.

Display I.5: Initial view of the dialog box for Column Statistics.

Currently, there are no columns selected, but clicking in the Input variable
box brings up a list of possible columns in the display window on the left. The
results of these operations are shown in Display I.6. We double click on C2 in
the variable list, which places this entry in the Input variable box as shown in
Display I.7. Alternatively, we could have simply typed this entry into the box.
After clicking the OK button, we obtain the output

Mean of C2 = 69.9

in the Session window.

Display I.6: View of the dialog box for Column Statistics after selecting Mean and
bringing up the variable list.
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Display I.7: Final view of the dialog box for Column Statistics.

Quite often, it is faster and more convenient to simply type your commands
directly into the Session window. Sometimes, it is necessary to use the Session
window approach. So we now describe the use of commands in the Session
window.
The basic structure of such a command with n arguments is

command name E1,E2,...,En
where Ei is the ith argument. Alternatively, we can type

command name E1 E2 ... En
if we don�t want to type commas. Conveniently, if the arguments E1,E2,...,En
are consecutive columns in the worksheet, we have the following short-form

command name E1-En
which saves even more typing and accordingly decreases our chance of making a
typing mistake. If you are going to type a long list of arguments and you don�t
want them all on the same line, then you can type the continuation symbol &
where you want to break the line and then hit Enter. Minitab responds with
the prompt

CONT>

and you continue to type argument names. The command is executed when you
hit Enter after an argument name without a continuation character following
it.
Many commands can, in addition, be supplied with various subcommands

that alter the behavior of the command. The structure for commands with
subcommands is

command name E1 ... En1 ;
subcommand name En1+1 ... En2 ;

...
subcommand name Enk−1+1 ... Enk .

Notice that when there are subcommands each line ends with a semicolon until
the last subcommand, which ends with a period. Also, subcommands may have
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arguments. When Minitab encounters a line ending in a semicolon it expects a
subcommand on the next line and changes the prompt to

SUBC >

until it encounters a period, whereupon it executes the command. If while
typing in one of your subcommands you suddenly decide that you would rather
not execute the subcommand�perhaps you realize something was wrong on a
previous line�then type abort after the SUBC > prompt and hit Enter. As a
further convenience, it is worth noting that you need to only type in the Þrst
four letters of any Minitab command or subcommand.
For example, to calculate the mean of column C2 in the worksheet marks,

we can use the mean command in the Session window, as in
MTB > mean c2

and we obtain the same output in the Session window as before.
There are additional ways in which you can input commands to Minitab.

Instead of typing the commands directly into the Session window, you can also
type these directly into the Command Line Editor, which is available via E

¯
dit

I Com
¯
mand Line Editor. Multiple commands can then be typed directly into a

box that pops up and executed when the Submit Commands button is clicked.
Output appears in the Session window. Also, many commands are available on
a toolbar that lies just below the menu bar at the top of the Minitab window.
There is a different toolbar depending upon which window is active. We give a
brief discussion of some of the features available in the toolbar in later sections.

7 Entering Data into a Worksheet
There are various methods for entering data into a worksheet. The simplest
approach is to use the Data window to enter data directly into the worksheet
by clicking your mouse in a cell and then typing the corresponding data entry
and hitting Enter. Remember that you can make a Data window active by
clicking anywhere in the window or by using W

¯
indow in the menu bar. If you

type any character that is not a number, Minitab automatically identiÞes the
column containing that cell as a text variable and indicates that by appending
T to the column name, for example, C5-T in Display I.4. You do not need to
append the T when referring to the column. Also, there is a data direction
arrow in the upper-left corner of the data window that indicates the direction
the cursor moves after you hit Enter. Clicking on it alternates between row-wise
and column-wise data entry. Certainly, this is an easy way to enter data when it
is suitable. Remember, columns are variables and rows are observations! Also,
you can have multiple data windows open and move data between them. Use
the command F

¯
ile I N

¯
ew to open a new worksheet.
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7.1 Importing Data

If your data is in an external Þle (not an .mtw Þle), you will need to use F
¯
ile

I Other F
¯
iles I I

¯
mport Special Text to get the data into your worksheet. For

example, suppose in the Þle marks.txt we have the following data recorded,
just as it appears.

12389 81 85 78

97658 75 72 62

53546 77 83 81

55542 63 42 55

11223 71 82 67

77788 87 56 *

44567 23 45 35

32156 67 72 81

33456 81 77 88

67945 74 91 92

Each row corresponds to an observation, with the student number being the Þrst
entry, followed by the marks in the student�s Statistics, Calculus, and Physics
courses. These entries are separated by blanks.

Notice the * in the sixth row of this data Þle. In Minitab, a * signiÞes a
missing numeric value, i.e., a data value that for some reason is not available.
Alternatively, we could have just left this entry blank. A missing text value
is simply denoted by a blank. Special attention should be paid to missing
values. In general, Minitab statistical analyses ignore any cases (observations)
that contain missing data except that the output of the command will tell you
how many cases were ignored because of missing data. It is important to pay
attention to this information. If your data is riddled with a large number of
missing values, your analysis may be based on very few observations�even if
you have a large data set!

When data in such a Þle is blank-delimited like this, it is very easy to read
in. After the command F

¯
ile I Other F

¯
iles I I

¯
mport Special Text, we see the

dialog box shown in Display I.8 less C1�C4 in the Store data in column(s): box.
We typed C1-C4 into this window to indicate that we want the data read in to
be stored in these columns. Note that it doesn�t matter if we use lower-case or
upper-case for the column names, as Minitab is not case sensitive. After clicking
OK, and navigating to the Windows folder C:\minitabdata, we see the dialog
box depicted in Display I.9, which we use to indicate from which Þle we want
to read the data. Note that if your data is in .txt Þles rather than .dat Þles,
you will have to indicate that you want to see these in the Files of type box by
selecting Text Files (and then all Þles with this suffix in the Data directory are
listed) or perhaps All Files. Clicking on marks.txt results in the data being
read into the worksheet.
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Display I.8: Dialog box for importing data from external Þle.

Display I.9: Dialog box for selecting Þle from which data is to be read in.

Of course, this data set does not contain the text variable denoting the
student�s gender. Suppose that the Þle marksgend.txt contains the following
data exactly as typed.

12389 81 85 78 m
97658 75 72 62 m
53546 77 83 81 f
55542 63 42 55 m
11223 71 82 67 f
77788 87 56 * f
44567 23 45 35 m
32156 67 72 81 m
33456 81 77 88 f
67945 74 91 92 f

As this Þle contains text data in the Þfth column, we must tell Minitab how
the data is formatted in the Þle. To access this feature, we click on the Format
button in the dialog box shown in Display I.8. This brings up the dialog box
shown in Display I.10. To indicate that we will specify the format, we click the
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radio button User-speciÞed format and Þll the particular format into the box
as shown in Display I.11. The format statement says that we are going to read
in the data according to the following rule: a numeric variable occupying Þve
spaces and with no decimals, followed by a space, a numeric variable occupying
two spaces with no decimals, a space, a numeric variable occupying two spaces
with no decimals, a space, a numeric variable occupying two spaces with no
decimals, a space, and a text variable occupying one space. This rule must be
rigorously adhered to or errors will occur.

Display I.10: Initial dialog box for formatted input.

Display I.11: Dialog box for formatted input with the format Þlled in.

So the rules you need to remember, if you use formatted input, are that ak
indicates a text variable occupying k spaces, kx indicates k spaces, and fk.l
indicates a numeric variable occupying k spaces, of which l are to the right
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of the decimal point. Note if a data value does not Þll up the full number of
spaces allotted to it in the format statement, it must be right justiÞed in its
Þeld. Also, if a decimal point is included in the number, this occupies one of the
spaces allocated to the variable and similarly for a minus or plus sign. There are
many other features to formatted input that we will not discuss here. Use the
Help button in the dialog box for information on these features. Finally, clicking
on the OK button reads this data into a worksheet as depicted in Display I.4.
Typically, we try to avoid the use of formatted input because it is somewhat
cumbersome, but sometimes we must use it.
In the session environment, the read command is available for inputting

data into a worksheet with capabilities similar to what we have described. For
example, the commands

MTB >read c1-c4
DATA>12389 81 85 78
DATA>97658 75 72 62
DATA>53546 77 83 81
DATA>55542 63 42 55
DATA>11223 71 82 67
DATA>77788 87 56 *
DATA>44567 23 45 35
DATA>32156 67 72 81
DATA>33456 81 77 88
DATA>67945 74 91 92
DATA>end
10 rows read.

place the Þrst four columns into the marks worksheet. After typing read c1-c4
after the MTB > prompt and hitting Enter, Minitab responds with the DATA>
prompt, and we type each row of the worksheet in as shown. To indicate that
there is no more data, we type end and hit Enter. Similarly, we can enter text
data in this way but can�t combine the two unless we use a format subcommand.
We refer the reader to help for more description of how this command works.

7.2 Patterned Data

Often, we want to input patterned data into a worksheet. By this we mean
that the values of a variable follow some determined rule. We use the command
C
¯
alc I Make

¯
Patterned Data for this. For example, implementing this com-

mand with the entries in the dialog box depicted in Display I.12 (for a S
¯
imple

Set of Numbers) adds a column C6 to the marks worksheet with the sequence
0, 0.5, 1.0, 1.5, 2.0 repeated twice. For this we entered 0 in the From Þrst value
box, a 2.0 in the To last value box, a .5 in the In steps of box, a 1 in the
Number of times to list each value box, and a 2.0 in the Number of times to
list the whole sequence box. Basically, we can start a sequence at any number
m and successively increment this with any number d > 0 until the next addi-
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tion would exceed the last value n prescribed, repeat each element l times, and
Þnally repeat the whole sequence k times.

Display I.12: Dialog box for making patterned data with some entries Þlled in.

There is some shorthand associated with patterned data that can be very
convenient. For example, typing m : n in a Minitab command is equivalent to
typing the values m,m+1, . . . , n when m < n and m,m− 1, ..., n when m > n,
and m when m = n. The expression m : n/d, where d > 0, expands to a list as
above but with the increment of d or −d, whichever is relevant, replacing 1 or
−1. If m < n, then d is added to m until the next addition would exceed n, and
if m > n, then d is subtracted fromm until the next subtraction would be lower
than n. The expression k(m : n/d) repeatsm : n/d for k times, while (m : n/d)l
repeats each element in m : n/d for l times. The expression k(m : n/d)l repeats
(m : n/d)l for k times.
The set command is available in the Session window to input patterned

data. For example, suppose we want C6 to contain the ten entries 1, 2, 3, 4, 5,
5, 4, 3, 2, 1. The command

MTB >set c6
DATA>1:5
DATA>5:1
DATA>end

does this. Also, we can add elements in parentheses. For example, the command

MTB >set c6
DATA>(1:2/.5 4:3/.2)
DATA>end

creates the column with entries 1.0, 1.5, 2.0, 4.0, 3.8, 3.6, 3.4, 3.2, 3.0. The
multiplicative factors k and l can also be used in such a context. Obviously,
there is a great deal of scope for entering patterned data with set. The general
syntax of the set command is
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set E1
where E1 is a column.

7.3 Printing Data in the Session Window

Once we have entered the data into the worksheet, we should always check
that we have made the entries correctly. Typically, this means printing out
the worksheet and checking the entries. The command Da

¯
ta I Di

¯
splay Data

will print the data you ask for in the Session window. For example, with the
worksheet marks the dialog box pictured in Display I.13 causes the contents of
this worksheet to be printed when we click on OK. We selected which variables
to print by Þrst clicking in the Columns, constants, and matrices to display box,
and then double clicking on the variables in the variable list on the left.
The print command is available in the Session window and is often conve-

nient to use. The general syntax for the print command is
print E1 ... Em

where E1, ..., Em are columns and constants. This prints the contents of these
columns and constants in the Session window.

Display I.13: Dialog box for printing worksheet in the Session window.

7.4 Assigning Constants

To enter constants, we use the C
¯
alc I Cal

¯
culator command and Þll in the dialog

box appropriately. For example, suppose we want to assign the values k1=.5,
k2=.25, and k3=.25 to the constants k1, k2, and k3. These could serve as
weights to calculate a weighted average of the marks in the marks worksheet.
Then the C

¯
alc I Cal

¯
culator command leads to the dialog box displayed in

Display I.14, where we have typed k1 into the Store result in variable box and
the value .5 into the Expression box. Clicking on OK then makes the assignment.



Minitab for Data Management 19

Note that we can assign text values to constants by enclosing the text in double
quotes. We will talk about further features of Calculator later in this manual.
Similarly, we assign values to k2 and k3.

Display I.14: Filled in dialog box for assigning the constant k1 the value .5.

The let command is available in the Session window and is quite convenient.
The following commands make this assignment and then we check, using the
print command, that we have entered the constants correctly.
MTB >let k1=.5
MTB >let k2=.25
MTB >let k3=.25
MTB >print k1-k3
K1 0.500000
K2 0.250000
K3 0.250000

Also, we can assign constants text values. For example,

MTB >let k4=�result�

assigns K4 the value result. Note the use of double quotes.

7.5 Naming Variables and Constants

It often makes sense to give the columns and constants names rather than just
referring to them as C1, C2, ..., K1, K2, etc. This is especially true when there
are many variables and constants, as it would be easy to slip and use the wrong
column in an analysis and then wind up making a mistake. To assign a name to
a variable, simply go to the blank cell at the top of the column in the worksheet
corresponding to the variable and type in an appropriate name. For example,
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we have used studid, statistics, calculus, physics, and gender for the
names of C1, C2, C3, C4, and C5, respectively, and these names appear in
Display I.15.

Display I.15: Worksheet marks with named variables.

In the Session window, the name command is available for naming variables
and constants. For example, the commands

MTB >name c1 �studid� c2 �stats� c3 �calculus� &
CONT>c4 �physics� c5 �gender� &
CONT>k1 �weight1� k2 �weight2� k3 �weight3�

give the names studid to C1, stats to C2, calculus to C3, physics to C4,
gender to C5, weight1 to K1, weight2 to K2, and weight3 to K3. Notice that
we have made use of the continuation character & for convenience in typing in
the full input to name. When using the variables as arguments, just enclose
the names in single quotes. For example,

MTB >print �studid� �calculus�

prints out the contents of these variables in the Session window.
Variable and constant names can be at most 31 characters in length, cannot

include the characters #, �, and cannot start with a leading blank or *. Recall
that Minitab is not case sensitive, so it does not matter if we use lower-case or
upper-case letters when specifying the names.

7.6 Information about a Worksheet

We can get information on the data we have entered into the worksheet by using
the info command in the Session window. For example, we get the following
results based on what we have entered into the marks worksheet so far.

MTB >info
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Column Name Count Missing
A C1 studid 10 0
C2 stats 10 0
C3 calculus 10 0
C4 physics 10 1

A C5 gender 10 0
Constant Name Value
K1 weight1 0.500000
K2 weight2 0.250000
K3 weight3 0.250000

Notice that the info command tells us how many missing values there are and
in what columns they occur and also the values of the constants.
This information can also be accessed directly from the Project Manager

window via W
¯
indow I Project Manager.

7.7 Editing a Worksheet

It often happens that after data entry we notice that we have made some mis-
takes or we obtain some additional information, such as more observations. So
far, the only way we could change any entries in the worksheet or add some
rows is to reenter the whole worksheet!
Editing the worksheet is straightforward because we simply change any cells

by retyping their entries and hitting the Enter key. We can add rows and
columns at the end of the worksheet by simply typing new data entries in the
relevant cells. To insert a row before a particular row, simply click on any entry
in that row and then the menu command Ed

¯
itor I Insert Rows

¯
. Fill in the

blank entries in the new row. To insert a column before a particular column,
simply click on any entry in that column and then the menu command Ed

¯
itor

I Insert
¯
Columns. Fill in the blank entries in the new column. To insert a

cell before a particular cell, simply click on any entry in that cell and the menu
command Ed

¯
itor I I

¯
nsert Cells. Fill in the blank entry in the new cell that

appears in place of the original with all other cells in that column�and only
that column�pushed down.
If you wish to clear a number of cells in a block, click in the cell at the start

of the block, and holding the mouse key down, drag the cursor through the
block so that it is highlighted in black. Click on the Cut icon on the Minitab
taskbar, and all the entries will be deleted. Cells immediately below the block
move up to Þll in the vacated places. A convenient method for clearing all the
data entries in a worksheet, with the relevant Data window active, is to use the
command E

¯
dit I Select A

¯
ll Cells, which causes all the cells to be highlighted,

and click on the Cut icon. Always save the contents of the current worksheet
before doing this unless you are absolutely sure you don�t need the data again.
We discuss how to save the contents of a worksheet in Section I.8.
To copy a block of cells, click in the cell at the start of the block and, holding

the mouse key down, drag the cursor through the block so that it is highlighted
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in black, but, instead of hitting the backspace key, use the command E
¯
dit I

C
¯
opy Cells or click on the Copy icon on the Minitab taskbar. The block of cells
is now copied to your clipboard. If you not only want to copy a block of cells
to your clipboard but remove them from the worksheet, use the command E

¯
dit

I Cut
¯
Cells or the Cut icon on the Minitab taskbar instead. Note that any

cells below the removed block will move up to replace these entries. To paste
the block of cells into the worksheet, click on the cell before which you want the
block to appear or that is at the start of the block of cells you wish to replace
and issue the command E

¯
dit I P

¯
aste Cells, or use the Paste icon on the Minitab

taskbar. A dialog box appears as in Display I.16, where you are prompted as to
what you want to do with the copied block of cells. If you feel that a cutting or
pasting was in error, you can undo this operation by using E

¯
dit I U

¯
ndo Cut or

E
¯
dit I U

¯
ndo Paste, respectively, or use the Undo icon on the Minitab taskbar.

Display I.16: Dialog box that determines how a block of copied cells is used.

An alternative approach is available for copying operations using Da
¯
ta I

C
¯
opy and Þlling in the dialog box appropriately. We refer the reader to the
online manual for more description of these features.
One can also delete selected rows from speciÞed columns using Da

¯
taI D

¯
elete

Rows and Þlling in the dialog box appropriately. Notice, however, that whenever
we delete a cell, the contents of the cells beneath the deleted one in that column
simply move up to Þll the cell. The cell entry does not become missing; rather,
cells at the bottom of the column become undeÞned! If you delete an entire
row, this is not a problem because the rows below just shift up. For example,
if we delete the third row, then in the new worksheet, after the deletion, the
third row is now occupied by what was formerly the fourth row. Therefore, you
should be careful, when you are not deleting whole rows, to ensure that you get
the result you intended.
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Note that if you should delete all the entries from a column, this variable
is still in the worksheet, but it is empty now. If you wish to delete a variable
and all its entries, this can be accomplished from Da

¯
ta I E

¯
rase Variables and

Þlling in the dialog box appropriately. This is a good idea if you have a lot of
variables and no longer need some of them.

There are various commands in the Session window available for carrying
out these editing operations. For example, the restart command in the Session
window can be used to remove all entries from a worksheet. The let command
allows you to replace individual entries. For example,

MTB > let c2(2)=3

assigns the value 3 to the second entry in the column C2. The copy command
can be used to copy a block of cells from one place to another. The insert
command allows you to insert rows or observations anywhere in the worksheet.
The delete command allows you to delete rows. The erase command is avail-
able for the deletion of columns or variables from the worksheet. As it is more
convenient to edit a worksheet by directly working on the worksheet and using
the menu commands, we do not discuss these commands further here.

8 Saving, Retrieving, and Printing

Quite often, you will want to save the results of all your work in creating a work-
sheet. If you exit Minitab before you save your work, you will have to reenter
everything. So we recommend that you always save. To use the commands of
this section, make sure that the Worksheet window of the worksheet in question
is active.

Use F
¯
ile I Save C

¯
urrent Worksheet to save the worksheet with its current

name, or the default name if it doesn�t have one. If you want to provide a name
or store the worksheet in a new location, then use F

¯
ileI Save

¯
CurrentWorksheet

As and Þll in the dialog box depicted in Display I.17 appropriately. The Save
in box at the top contains the name of the folder in which the worksheet will be
saved once you click on the Save button. Here the folder is called minitabdata,
and you can navigate to a new folder using the Up One Level button immediately
to the right of this box. The next button allows you to create a subfolder within
the current folder. The box immediately below contains a list of all Þles of type
.mtw in the current folder. You can select the type of Þle to display by clicking
on the arrow in the Save as type box, which we have done here, and click on
the type of Þle you want to display that appears in the drop-down list. There
are several possibilities including saving the worksheet in other formats, such
as Excel. Currently, there is one .mtw Þle in the folder minitabdata and it is
called marks.mtw. If you want to save the worksheet with a particular name,
type this name in the File name box and click on the Save button.
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Display I.17: Dialog box for saving a worksheet.

To retrieve a worksheet, use F
¯
ile I Open W

¯
orksheet and Þll in the dialog

box as depicted in Display I.18 appropriately. The various windows and buttons
in this dialog box work as described for the F

¯
ile I S

¯
ave Current Worksheet As

command, with the exception that we now type the name of the Þle we want
to open in the File name box, alternatively click on the relevant Þle, and then
click on the Open button.

To print a worksheet, use the command F
¯
ile I P

¯
rint Worksheet. The dialog

box that subsequently pops up allows you to control the output in a number of
ways.

It may be that you would prefer to write out the contents of a worksheet to
an external Þle that can be edited by an editor or perhaps used by some other
program. This will not be the case if we save the worksheet as an .mtw Þle as
only Minitab can read these. To do this, use the command F

¯
ile I Other F

¯
iles

I E
¯
xport Special Text, Þlling in the dialog box and specifying the destination

Þle when prompted. For example, if we want to save the contents of the marks
worksheet, this command results in the dialog box of Display I.19 appearing.
We have entered all Þve columns into the Columns to export box and have not
speciÞed a format, so the columns will be stored in the Þle with single blanks
separating the columns. Clicking the OK button results in the dialog box of
Display I.20 appearing. Here, we have typed in the name marks.dat to hold the
contents. Note that while we have chosen a .dat type Þle, we also could have
chosen a .txt type Þle. Clicking on the Save button results in a Þle marks.dat
being created in the folder minitabdata with contents as in Display I.21.
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Display I.18: Dialog box for retrieving a worksheet.

Display I.19: Dialog box for saving the contents of a worksheet to an external
(non-Minitab) Þle.

Display I.20: Dialog box for selecting external Þle to hold contents of a worksheet.
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Display I.21: Contents of the Þle marks.dat.

In the Session window, the commands save and retrieve are available for
saving and retrieving a worksheet in the .mtw format and the command write
is available for saving a worksheet in an external Þle. We refer the reader to
help for a description of how these commands work.

9 Mathematical Operations
When carrying out a data analysis, a statistician is often called upon to trans-
form the data in some way. This may involve applying some simple transfor-
mation to a variable to create a new variable�for example, take the natural
logarithm of every grade in the marks worksheet�to combining several vari-
ables together to form a new variable�for example, calculate the average grade
for each student in the marks worksheet. In this section, we present some of the
ways of doing this.

9.1 Arithmetical Operations

Simple arithmetic can be carried out on the columns of a worksheet using the
arithmetical operations of addition +, subtraction −, multiplication *, division
/, and exponentiation ** via the C

¯
alc I Cal

¯
culator command. When columns

are added together, subtracted one from the other, multiplied together, divided
one by the other (make sure there are no zeros in the denominator column),
or one column exponentiates another, these operations are always performed
component-wise. For example, C1*C2 means that the ith entry of C1 is multi-
plied by the ith entry of C2, etc. Also, make sure that the columns on which you
are going to perform these operations correspond to numeric variables! While
these operations have the order of precedence **, */, +−, parentheses ( ) can
and should be used to ensure an unambiguous result. For example, suppose in
the marks worksheet we want to create a new variable by taking the average
of the Statistics and Calculus grades and then subtracting this average from
the Physics grade and placing the result in C6. Filling in the dialog box, corre-
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sponding to C
¯
alc I Cal

¯
culator, as shown in Display I.22 accomplishes this when

we click on the OK button. Note that we can either type the relevant expres-
sion into the Expression box or use the buttons and double click on the relevant
columns. Further, we type the column where we wish to store the results of our
calculation in the Store result in variable box. These operations are done on
the corresponding entries in each column; corresponding entries in the columns
are operated on according to the formula we have speciÞed, and a new column
of the same length containing all the outcomes is created. Note that the sixth
entry in C6 will be * (or missing) because this entry was missing for C4.
These kinds of operations can also be carried out directly in the Session

window using the let command, and in some ways this is a simpler approach.
For example, the session command
MTB >let c6=c4-(c2+c3)/2

accomplishes this.

Display I.22: Dialog box for carrying out mathematical calculations.

We can also use these arithmetical operations on the constants K1, K2,
etc., and numbers to create new constants or use the constants as scalars in
operations with columns. For example, suppose that we want to compute the
weighted average of the Statistics, Calculus, and Physics grades, where Statistics
gets twice the weight of the other grades. Suppose that we created, as part of the
marks worksheet, the constants weight1 = .5, weight2 = .25, and weight3
= .25 in K1, K2, and K3, respectively. So this weighted average is computed
via the command
MTB >let c7=�weight1�*�stats�+�weight2�*�calculus�&
CONT>+�weight3�*�physics�
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9.2 Mathematical Functions

Various mathematical functions are available in Minitab. For example, suppose
we want to compute the natural logarithm of the Statistics mark for each student
and store the result in C8. Using the C

¯
alc I Cal

¯
culator command, with the

dialog box as in Display I.23, accomplishes this. A complete list of such functions
is given in the Functions window when All functions is in the window directly
above the list.
The same result can be obtained using the session command let and the

natural logarithm function ln. For example,
MTB >let c8=ln(c2)

calculates the natural log of every entry in C2 and places the results in C8. See
Appendix B.1 for a list of mathematical functions available.

Display I.23: Dialog box for mathematical calculations illustrating the use of the
natural logarithm function.

9.3 Comparisons and Logical Operations

Minitab also contains the following comparison and logical operators.

Comparison operators Logical operators
equal to =, eq &, and
not equal to <>, ne \, or
less than <, lt ~, not
greater than >, gt
less than or equal to <=, le
greater than or equal to >=, ge
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Notice that there are two choices for these operators; for example, use either
the symbol >= or the mnemonic ge.
The comparison and logical operators are useful when we have simple ques-

tions about the worksheet that would be tedious to answer by inspection. This
feature is particularly useful when we are dealing with large data sets. For ex-
ample, suppose that we want to count the number of times the Statistics grade
was greater than the corresponding Calculus grade in the marks worksheet. The
command C

¯
alc I Cal

¯
culator gives the dialog box shown in Display I.24, where

we have put c6 in the S
¯
tore result in variable box and c2 > c3 in the Expres-

sion box. Clicking on the OK button results in the ith entry in C6 containing a
1 if the ith entry in C2 is greater than the ith entry in C3; i.e., the comparison
is true, and a 0 otherwise. In this case, C6 contains the entries: 0, 1, 0, 1, 0,
1, 0, 0, 1, 0, which the worksheet in Display I.4 veriÞes as appropriate. If we
use C

¯
alc I Cal

¯
culator to calculate the sum of the entries in C6, we will have

computed the number of times the Statistics grade is greater than the Calculus
grade.
These operations can also be simply carried out using session commands.

For example,

MTB >let c6=c2>c3

MTB >let k4=sum(c6)

MTB >print k4

K4 4.00000

accomplishes this.
The logical operators combine with the comparison operators to allow more

complicated questions to be asked. For example, suppose we wanted to calculate
the number of students whose Statistics mark was greater than their Calculus
mark and less than or equal to their Physics mark. The commands

MTB >let c6=c2>c3 and c2<=c4

MTB >let k4=sum(c6)

MTB >print k4

K4 1.00000

accomplish this. In this case, both conditions c2>c3 and c2<=c4 have to be
true for a 1 to be recorded in C6. Note that the observation with the missing
Physics mark is excluded. Of course, we can also implement this using C

¯
alc I

Cal
¯
culator and Þlling in the dialog box appropriately.
Text variables can be used in comparisons where the ordering is alphabetical.

For example,

MTB >let c6=c5<�m�

puts a 1 in C6 whenever the corresponding entry in C5 is alphabetically smaller
than m.
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Display I.24: Dialog box for comparisons.

9.4 Column and Row Statistics

There are various column statistics that compute a single number from a column
by operating on all of the elements in a column. For example, suppose that we
want the mean of all the Statistics marks, i.e., the mean of all the entries in
C2. The command C

¯
alc I C

¯
olumn Statistics produces the dialog box of Display

I.25, where we have selected Mean as the particular statistic to compute and C2
as the column to use. Clicking OK causes the mean of column C2 to be printed
in the Session window. If we want to, we can store this result in a constant or
column by making an appropriate entry in the Store result in box. In Display
I.25, we see that we have stored the mean of C2 in the constant K1. We also
see from the dialog box that there are a number of possible statistics that can
be computed.

We can also compute statistics row-wise. One difference with column sta-
tistics is that these must be stored. For example, suppose we want to compute
the average of the Statistics, Calculus, and Physics marks for each individual.
The command C

¯
alc I Ro

¯
w Statistics produces the dialog box shown in Display

I.26, where we have placed C2, C3, and C4 into the Input variables box and C6
into the Store result in box.
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Display I.25: Dialog box for computing column statistics.

Display I.26: Dialog box for computing row statistics.

It is also possible to compute column statistics using session commands. For
example,

MTB >mean(c2)
MEAN = 69.900

computes the mean of c2. If we want to save the value for subsequent use, then
the command

MTB >let k1=mean(c2)
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does this. The general syntax for column statistic commands is

column statistic name(E1)

where the operation is carried out on the entries in column E1, and output is
written to the screen unless it is assigned to a constant using the let command.
See Appendix B.2 for a list of all the column statistics available.
Also, for most column statistics there are versions that compute row statis-

tics, and these are obtained by placing r in front of the column statistic name.
For example,

MTB >rmean(c2 c3 c4 c6)

computes the mean of the corresponding entries in C2, C3, and C4 and places
the result in C6. The general syntax for row statistic commands is

row statistic name(E1 . . . Em Em+1)

where the operations are carried out on the rows in columns E1, . . . , Em, and
the output is placed in column Em+1. See Appendix B.3 for a list of all the row
statistics available.

9.5 Sorting Data

It often arises that we want to sort a column so that its values ascend from
smallest to largest or descend from largest to smallest. Note that ordering here
could refer to numerical order or alphabetical order, so we also consider ordering
text columns. Also, we may want to sort all the rows contained in some subset
of the columns in the worksheet by a particular column. The Da

¯
ta I S

¯
ort

command allows us to carry out these tasks.
For example, suppose that we want to sort the entries in C2 in the marks

worksheet�the Statistics grades�from smallest to largest and place the sorted
values in C6. Then the Da

¯
ta I S

¯
ort command brings up the dialog box shown

in Display I.27, where the Sort column(s) box contains the column C2 to be
sorted, the Store sorted data in box contains C6, where we will store the sorted
column, and C2 is also placed in the By column box. This command results in
C6 containing 23, 63, 67, 71, 74, 75, 77, 81, 81, and 87. If we had clicked the
Descending box, the order of appearance of these values in C6 would have been
reversed.
If we had placed another column in the By column box, say C5, then C5

would have been sorted with the values in C2 carried along and placed in C6;
i.e., the values in C2 would be sorted by the values in C5. So all the Statistics
marks of females, in the order they appear in C2, will appear in C6 Þrst and
then the Statistics marks of males. So, replacing C2 by C5 in this box would
result in the values in C6 becoming 77, 71, 87, 81, 74, 81, 75, 63, 23, and 67. If
we Þll in the next By column box with another column, say C3, then the values
in C2 are sorted Þrst by gender and then within gender by the values in C3.
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Display I.27: Dialog box for sorting.

The general syntax of the corresponding session command sort is

sort E1 E2 . . .Em Em+1 . . .E2m

where E1 is the column to be sorted, and E2, ..., Em are carried along with
the results placed in columns Em+1, ..., E2m. Note that this sort can also be
accomplished using the by subcommand, where the general syntax is

sort E1 E2 . . .Em Em+1 . . .E2m;
by E2m+1 . . .En.

where now we sort by columns E2m+1, ..., En, sorting Þrst by E2m+1, then
E2m+2, etc., carrying along E1, ..., Em and placing the result in Em+1, ...,
E2m. The descending subcommand can also be used to indicate which sorting
variables we want to use in descending order, rather than ascending order.

9.6 Computing Ranks

Sometimes, we want to compute the ranks of the numeric values in a column.
The rank ri of the ith value in a column is a value that reßects its relative size
in the column. For example, if the ith value is the smallest value, then ri = 1;
if it is the third smallest, then ri = 3, etc. If values are the same, i.e., tied,
then each value receives the average rank. To calculate the ranks of the entries
in a column, we use the Da

¯
ta I R

¯
ank command. For example, suppose that

C6 contains the values 6, 4, 3, 2, 3, and 1. Then the Da
¯
ta I R

¯
ank command

brings up the dialog box in Display I.28, which is Þlled in so that the ranks of
the entries in C6 are placed in C7. In this case, the ranks are 6.0, 5.0, 3.5, 2.0,
3.5, and 1.0, respectively.
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Display I.28: Dialog box for computing ranks.

The syntax of the corresponding session command rank is

rank E1 E2

where E1 is the column whose ranks we want to compute and E2 is the column
that will hold the computed ranks.

10 Exercises

1. Start Minitab and set it up so that you can type commands in the Session
window and edit your output. Print the contents of the Session window.

2. Use the online manual to read and print the entry on how you can get
help in Minitab.

3. Invoke the C
¯
alc I Cal

¯
culator command, place k1 in the Store result in

variable box, read Help in the dialog box, and from this Þgure out how to
compute the expression 203*(10345-678)/3.6. Finally, invoke the session
command print k1 and print the Session window.

4. The following data give the High and Low trading prices in dollars for
various stocks on a given day on an exchange. Create a worksheet, giving
the columns the same variable names. Print the worksheet to check that
you have successfully entered it. Save the worksheet giving it the name
stocks.
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Stock High Low
ACR 7.95 7.80
MGI 4.75 4.00
BLD 112.25 109.75
CFP 9.65 9.25
MAL 8.25 8.10
CM 45.90 45.30
AZC 1.99 1.93
CMW 20.00 19.00
AMZ 2.70 2.30
GAC 52.00 50.25

5. Generate a column C1 containing all the values starting at 1 to 10 in
increments of .1. Generate a column C2 containing the sequence 1:10
repeated ten times. Save these two columns in a Þle columns.txt and
print this Þle.

6. Create a .txt Þle containing the data in Exercise 4. Using a format
statement, input these data into a worksheet. Print the contents of your
session.

7. Retrieve the worksheet stocks created in Exercise 4. Change the Low
value in the stock MGI to 3.95. Calculate the average of the High and
Low prices for all the stocks, and save this in a column called average.
Calculate the average of all the High prices, and save this in a constant
called avhi. Similarly, do this for all the Low prices, and save this in a
constant called avlo. Save the worksheet using the same name. Write all
the columns out to a Þle called stocks.dat. Print the Þle stocks.dat on
your system printer.

8. Retrieve the worksheet created in Exercise 7. Using Minitab commands,
calculate the number of stocks in the worksheet whose average is greater
than $5.00 and less than or equal to $45.00.

9. Using the worksheet created in Exercise 7, insert the following stocks at
the beginning of the worksheet.

Stock High Low
CLV 1.85 1.78
SIL 34.00 34.00
AC 14.45 14.05

Delete the variable average. Print and save the worksheet.

10. (a) Using patterned data input, place the values from −10 to 10 in incre-
ments of .1 in C1.
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(b) For each of the values in C1, calculate the value of the quadratic
polynomial 2x2+4x−3 (i.e., substitute the value in each entry in C1 into
this expression) and place these values in C2.

(c) Using Minitab commands and the values in C1 and C2, estimate the
point in the range from −10 to 10 where this polynomial takes its smallest
value and what this smallest value is. (Hint: Compute the ranks of the
values in C2.)

(d) Using Minitab commands and the values in C1 and C2, estimate the
points in the range from −10 to 10 where this polynomial is closest to 0.

11. (a) Using patterned data input, place values in the range from 0 to 5 using
an increment of .01 in C1.

(b) Calculate the value of 1 − e−x for each value in C1 and place the
result in C2.

(c) Using Minitab commands, Þnd the largest value in C1 where the corre-
sponding entry in C2 is less than or equal to .5. Note that e−x corresponds
to the exp command (see Appendix B.1) evaluated at −x.

12. Using patterned data input, place values in the range from −4 to 4 using
an increment of .01 in C1. Calculate the value of

1√
2π

e−x
2/2

for each value in C1, and place the result in C2, where π = 3.1415927.
Using parsums (see Appendix B.1), calculate the partial sums for C2,
and place the result in C3. Multiply C3 times .01. Find the largest value
in C1 such that the corresponding entry in C3 is less than or equal to .25.
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Chapter 1

Looking at Data: Exploring
Distributions

New Minitab commands discussed in this chapter

C
¯
alc I Probability D

¯
istributions I N

¯
ormal

Da
¯
ta I Co

¯
de

F
¯
ile I Open G

¯
raph

F
¯
ile I Sav

¯
e Graph As

G
¯
raph I B

¯
oxplot

G
¯
raph I C

¯
hart

G
¯
raph I Do

¯
tplot

G
¯
raph I H

¯
istogram

G
¯
raph I Pi

¯
e Chart

G
¯
raph I Probability

¯
Plot

G
¯
raph I Stem-and-Leaf

¯S
¯
tat I B

¯
asic Statistics I D

¯
isplay Descriptive Statistics

S
¯
tat I B

¯
asic Statistics I S

¯
tore Descriptive Statistics

S
¯
tat I T

¯
ables I Ta

¯
lly

This chapter is concerned with the various ways of presenting and summarizing
a data set. By presenting data, we mean convenient and informative methods of
conveying the information contained in a data set. There are two basic methods
for presenting data, namely graphically and through tabulations. Still, it can be
hard to summarize exactly what these presentations are saying about the data.
So the chapter also introduces various summary statistics that are commonly
used to convey meaningful information in a concise way.
All of these topics can involve much tedious, error-prone calculation, if we

were to insist on doing them by hand. An important point is that you should
almost never rely on hand calculation in carrying out a data analysis. Not only

39
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are there many far more important things for you to be thinking about, as the
text discusses, but you are also likely to make an error. On the other hand, never
blindly trust the computer! Check your results and make sure that they make
sense in light of the application. For this, a few simple hand calculations can
prove valuable. In working through problems, you should try to use Minitab as
much as possible, as this will increase your skill with the package and inevitably
make your data analyses easier and more effective.

1.1 Tabulating and Summarizing Data

If a variable is categorical, we construct a table using the values of the variable
and record the frequency (count) of each value in the data and perhaps the
relative frequency (proportion) of each value in the data as well. These relative
frequencies then serve as a convenient summarization of the data.
If the variable is quantitative, we typically group the data in some way;

i.e., divide the range of the data into nonoverlapping intervals and record the
frequency and proportion of values in each interval. Grouping is accomplished
using the Da

¯
ta I Co

¯
de command discussed in Appendix C.1.

If the values of a variable are ordered, we can record the cumulative dis-
tribution, namely, the proportion of values less than or equal to each value.
Quantitative variables are always ordered but sometimes categorical variables
are as well; for example, when a categorical variable arises from grouping a
quantitative variable.
Often, it is convenient with quantitative variables to record the empirical

distribution function, which for data values x1, . . . , xn is given by �F (x) =
(# of xi ≤ x)/n at a value x; i.e., �F (x) is the proportion of data values less
than or equal to x. We can summarize such a presentation via the calculation
of a few quantities, such as the Þrst quartile, the median, and the third quartile,
or present the mean and the standard deviation.
We introduce some new commands to carry out the necessary computations

using the data shown in Table 1.1.1. This is data collected by A.A. Michelson
and Simon Newcomb in 1882 concerning the speed of light. We will refer to
these hereafter as Newcomb�s data and place them in the column C1 with the
name time in the worksheet called newcomb.

28 26 33 24 34 −44 27 16 40 −2 29
22 24 21 25 30 23 29 31 19 24 20
36 32 36 28 25 21 28 29 37 25 28
26 30 32 36 26 30 22 36 23 27 27
28 27 31 27 26 33 26 32 32 24 39
28 24 25 32 25 29 27 28 29 16 23

Table 1.1.1: Newcomb�s data.
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1.1.1 Tallying Data

The S
¯
tat I T

¯
ables I T

¯
ally command tabulates data. Consider Newcomb�s mea-

surements in Table 1.1.1. These data range from −44 to 40 (use minimum and
maximum in C

¯
alc I Cal

¯
culator to calculate these values). Suppose we decide to

group these into the intervals (−50, 0], (0, 20], (20, 25], (25, 30], (30, 35], (35, 50].
Next, we want to record the frequencies, relative frequencies, cumulative fre-
quencies, and cumulative distribution of this grouped variable. First, we used
the Da

¯
ta I Co

¯
de I N

¯
umeric to Numeric command, as described in Appendix

C.1, to recode the data so that every value in (−50, 0] is given the value 1, every
value in (0, 20] is given the value 2, etc., and these values are placed in C2. The
dialog box for doing this is shown in Display 1.1.1.

Display 1.1.1: Dialog box for recoding Newcomb�s data.

Next, we used the S
¯
tat I T

¯
ables I T

¯
ally Individual Variables command,

with the dialog box shown in Display 1.1.2, to produce the output

C2 Count Percent CumCnt CumPct

1 2 3.03 2 3.03

2 4 6.06 6 9.09

3 17 25.76 23 34.85

4 26 39.39 49 74.24

5 10 15.15 59 89.39

6 7 10.61 66 100.00

N= 66

in the Session window.
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Display 1.1.2: Dialog box for tallying the variable C2 in the newcomb worksheet.

We can also use the S
¯
tat I T

¯
ables I T

¯
ally Individual Variables command

to compute the empirical distribution function of C1 in the newcomb worksheet.
First, we must sort the values in C1, from smallest to largest, using the Da

¯
ta

I S
¯
ort command described in Section I.10.6, and then we apply the S

¯
tat I

T
¯
ables I T

¯
ally Individual Variables command to this sorted variable. Note

that if values are repeated, then the value of the empirical cdf at this point is
the largest proportion.
The general syntax of the corresponding session command tally is
tally E1 . . .Em

where E1, ..., Em are columns of categorical variables, and the command is
applied to each column. If no subcommands are given, then only frequencies
are computed, while the subcommands percents computes relative frequencies,
cumcnts computes the cumulative frequency function, and cumpcts computes
the cumulative distribution of C2. Any of the subcommands can be dropped.
For example, the commands

MTB >sort c1 c3
MTB >tally c3;
SUBC>cumpcnts;
SUBC>store c4 c5.

Þrst use the sort command to sort the data in C1 from smallest to largest and
place the results in C3. The cumulative distribution is computed for the values
in C3 with the unique values in C3 stored in C4 and the cumulative distribution
at each of the unique values stored in C5 via the store subcommand to tally.

1.1.2 Describing Data

The S
¯
tat I B

¯
asic Statistics I D

¯
isplay Descriptive Statistics command is used

with quantitative variables to present a numerical summary of the variable val-
ues. These values are in a sense a summarization of the empirical distribution
of the variable. For example, in the newcomb worksheet the dialog box shown
in Display 1.1.3 leads to the output
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Variable N N* Mean SE Mean StDev Minimum Q1 Median

time 66 0 26.21 1.32 10.75 -44.00 24.00 27.00

Q3 Maximum

31.00 40.00

in the Session window. This provides the count N, the number of missing values
N*, the mean, standard error of the mean, standard deviation, minimum, Þrst
quartile Q1, median, third quartile Q3, and maximum of the variable C1. If we
want such a summary of a variable by the values of another variable, we place
these variables in the By variables box. For example, we might want such a
summary for each of the groups we created in Section 1.1.1, and so we would
place C2 in this box. Note that a number of summary statistics can also be
computed using the C

¯
alc I C

¯
olumn Statistics command discussed in Section

I.10.3.

Display 1.1.3: Dialog box for computing basic descriptive statistics of a quantitative
variable.

If we wish to compute some basic statistics and store these values for later
use, then the S

¯
tat I B

¯
asic Statistics I S

¯
tore Descriptive Statistics command

is available for this. For example, with the newcomb worksheet this command
leads to the dialog box shown in Display 1.1.4. Clicking on the Statistics button
results in the dialog box of Display 1.1.5, where we have checked First quartile,
Median, Third quartile, Inter

¯
quartile range, and N nonmissing as the statistics

we want to compute. The result of these choices is that the next available
variables in the worksheet contain these values. So in this case, the values of
C3�C7 are as depicted in Display 1.1.6. Note that these variables are now named
as well. Note that many more statistics are available using this command.
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Display 1.1.4: Dialog box for computing and storing various descriptive statistics.

Display 1.1.5: Dialog box for choosing the descriptive statistics to compute and store.

Display 1.1.6: Values obtained for descriptive statistics using dialog boxes in Displays
1.1.4 and 1.1.5.

The general syntax of the Session command describe, corresponding to S
¯
tat

I B
¯
asic Statistics I D

¯
isplay Descriptive Statistics, is

describe E1 . . .Em
where E1, ..., Em are columns of quantitative variables and the command is
applied to each column. A by subcommand can also be used. The stats
command is available in the Session window if we want to store the values of
statistics. We refer the reader to help for a description of this command.
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1.2 Plotting Data

One of the most informative ways of presenting data is via a plot. There are
many different types of plots within Minitab, and which one to use depends on
the type of variable you have and what you are trying to learn. In this section,
we describe how to use the plotting features in Minitab. There are, however,
many features of plotting that we will not describe. For example, there are
many graphical editing capabilities that allow you to add features, such as titles
or legends. We refer the reader to Help for more details on these features.

A plot in Minitab is made in a Graph window. You can make multiple plots
and retain each Graph window until you want to delete it simply by clicking
the × symbol in the upper-right-hand corner. You make any particular Graph
window active by clicking in it or by using the W

¯
indow command. A plot can

be saved in an external Þle in a variety of formats, such as Minitab graph .mgf,
bitmap .bmp, JPEG .jpg, etc., using the F

¯
ile I Sav

¯
e Graph As command. If

a graph has been saved in the .mgf format, it can be reopened using the F
¯
ile I

Open G
¯
raph command.

1.2.1 Stem-and-Leaf Plots

Stem-and-leaf plots are produced by the G
¯
raph I Stem-and-Leaf

¯
command.

These plots are also referred to as stemplots.

For example, using this command with the newcomb worksheet and the dialog
box in Display 1.2.1 produces the following output in the Session window.

Stem-and-leaf of time N = 66

Leaf Unit = 1.0

1 -4 4

1 -3

1 -2

1 -1

2 -0 2

2 0

5 1 669

(41) 2 01122333444445555566666777777888888899999

20 3 0001122222334666679

1 4 0

It is a stem-and-leaf plot of the values in time with an increment of 10. Notice
that we have placed 10 in the Increment box in the dialog box shown in Display
1.2.1 to reßect the fact we want the stem to be the units of 10.
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Display 1.2.1: Dialog box for droducing a stem-and-leaf plot.

The Þrst column gives the depths for a given stem, i.e., the number of obser-
vations on that line and below it or above it, depending on whether or not the
observation is below or above the median. The row containing the median is
enclosed in parentheses ( ), and the depth is only the observations on that line.
If the number of observations is even and the median is the average of values
on different rows, then parentheses do not appear. The second column gives
the stems, as determined by what is placed in Increment, and the remaining
columns give the ordered leaves, where each digit represents one observation.
The Leaf Unit determines where the decimal place goes after each leaf. So in
this example, the Þrst observation is −44.0, while it would be −4.4 if the Leaf
Unit were .1. Multiple stem-and-leaf plots can be carried out for a number of
columns simultaneously and also for a single variable by the values of another
variable.

1.2.2 Histograms

A histogram is a plot where the data are grouped into intervals, and over each
such interval a bar is drawn of height equal to the frequency (count) of data
values in that interval (frequency histogram) or of height equal to the relative
frequency (proportion) of data values in that interval (relative frequency his-
togram) or of height equal to the density of points in that interval, i.e., the
proportion of points in the interval divided by the length of the interval (den-
sity histogram). We recommend plotting density histograms. The G

¯
raph I

H
¯
istogram command is used to obtain these plots.
An important consideration when plotting multiple histograms for compar-

ison purposes is to ensure that all the histograms have the same x and y scales
so that the plots are visually comparable. The G

¯
raph I H

¯
istogram command

contains options that impose this restriction.
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Using G
¯
raph I H

¯
istogram with the newcomb worksheet, produces the dialog

box shown in Display 1.2.2. Selecting Simple and clicking on OK leads to the
dialog box in Display 1.2.3. We have placed the variable time in the Graph
variables box to indicate we want a histogram of this variable. To select a
density histogram we click on the Scale button, which brings up the dialog box
of Display 1.2.4, and then click on the Y-scale Type to obtain the dialog box
in Display 1.2.5, in which we have Þlled in the Density radio button. Clicking
on OK in this dialog box and in the dialog box of Display 1.2.3 produces the
density histogram of Display 1.2.6.
Note that we can produce multiple histograms by clicking on the Multiple

Graphs button in the dialog box of Display 1.2.3.

Display 1.2.2: Dialog box for selecting type of histogram.

Display 1.2.3: Dialog box for creating a histogram of the time variable in the newcomb
worksheet.
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Display 1.2.4: Dialog box for specifying characteristics of the histogram plotted.

Display 1.2.5: Dialog box for selecting frequency, relative frequency or density
histogram.
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Display 1.2.6: Density histogram of the time variable in the newcomb worksheet.

We can also edit a graph to modify its appearance by double-clicking on
various components of the plot in the graph window. For example, the plot in
Display 1.2.6 is based on a default algorithm in Minitab to divide up the range of
the data into bins and plot each bar over the mid-point of each bin. Sometimes
we prefer to select the bins ourselves and moreover specify cutpoints (the end-
points of each bin) rather than midpoints and have these cutpoints along the
x-axis. To do this, we double click on a value on the x-axis which brings up the
dialog box in Display 1.2.7, where we have clicked on the Binning tab. Here, we
have selected the radio button Cutpoints in the Interval type box and have Þlled
in the cutpoints −45,−30,−15, 0, 15, 30, 45 in the Midpoint/Cutpoint positions
box. Clicking on OK produces the plot shown in Display 1.2.8.

Display 1.2.7: Dialog box for editing the bins for the histogram.
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Display 1.2.8: Density histogram of the time variable in the newcomb worksheet with
speciÞed cutpoints.

The session command histogram is also available. This has the general
syntax

histogram E1 . . .Em
where E1, ..., Em correspond to columns. For example, the commands

MTB >histogram c1;
SUBC>cutpoints -45 -30 -15 0 15 30 45;
SUBC>density.

produce the histogram in Display 1.2.8 using the cutpoints and density sub-
commands. There are also subcommands midpoints and nintervals, which
specify the number of subintervals, and frequency or percent, which respec-
tively ensure that the heights of the bar lines equal the frequency and relative
frequency of the data values in the interval. Also, the cumulative subcom-
mand is available so that the bars represent all the values less than or equal
to the endpoint of an interval. The subcommand same ensures that multiple
histograms all have the same scale.
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1.2.3 Boxplots

Boxplots are useful summaries of a quantitative variable and are obtained using
the G

¯
raphI B

¯
oxplot command. Boxplots are used to provide a graphical notion

of the location of the data and its scatter in a concise and evocative way.
A boxplot is presented in Display 1.2.11 for the variable time in the newcomb

worksheet. The line in the center of the box is the median. The line below the
median is the Þrst quartile, also called the lower hinge, and the line above is
third quartile, also called the upper hinge. The difference between the third and
Þrst quartile is called the interquartile range, or IQR. The vertical lines from
the hinges are called whiskers, and these run from the hinges to the adjacent
values. The adjacent values are given by the greatest value less than or equal
to the upper limit (the third quartile plus 1.5 times the IQR) and by the least
value greater than or equal to the lower limit (the Þrst quartile minus 1.5 times
the IQR). The upper and lower limits are also referred to as the inner fences.
The outer fences are deÞned by replacing the multiple 1.5 in the deÞnition of
the inner fences by 3.0. Values beyond the outer fences are plotted with a * and
are called outliers. As with the plotting of histograms, multiple boxplots can be
plotted for comparison purposes, and again, it is important to make sure that
they all have the same scale.
The G

¯
raph I B

¯
oxplot command produces the dialog box shown in Display

1.2.9. Selecting Simple and clicking on OK produces the dialog box shown in
Display 1.2.10, where we have Þlled in the time variable in the Graph variable
box. Clicking on OK produces the boxplot shown in Display 1.2.11.
There is a corresponding session command called boxplot. We refer the

reader to help for more discussion of this command.

Display 1.2.9: Dialog box for selecting type of boxplot.
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Display 1.2.10: Dialog box for producing a boxplot of the time variable in the
newcomb worksheet.

Display 1.2.11: Boxplot of the time variable in the newcomb worksheet.

There is a corresponding session command called boxplot. We refer the
reader to help for more discussion of this command.

1.2.4 Bar Charts

Bar charts are used to plot the distributions of categorical variables. Consider
the categorical variable C2 (created in Section 1.1.1) in the newcomb worksheet.
The command G

¯
raph I Bar

¯
Chart brings up the dialog box shown in Display

1.2.12. Selecting Simple and clicking on OK brings up the dialog box shown in
Display 1.2.13, where we have Þlled in the C

¯
ategorical variables box with C2.

Now, since we want a graph of the distribution of C2, we next clicked on the
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Chart
¯
Options button to bring up the dialog box of Display 1.2.14, where we

have checked the Show Y as a P
¯
ercent box. Clicking on O

¯
K in this and the

dialog box of Display 1.2.13 produces the bar chart of Display 1.2.15.

Display 1.2.12: Dialog box for selecting type of bar chart.

Display 1.2.13: Dialog box for selecting variable to plot in a bar chart.
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Display 1.2.14: Dialog box to use to specify that you want the distribution to be
plotted (and not just the counts).

Display 1.2.15: Bar chart of the variable C2 in the newcomb worksheet.

The corresponding session command is

chart E1

which produces a bar chart for the values in column E1. The subcommand
percent ensures that the distribution is plotted.
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1.2.5 Pie Charts

A pie chart is a disk divided up into wedges where each wedge corresponds to
a unique value of a variable, and the area of the wedge is proportional to the
relative frequency of the value with which it corresponds. Pie charts can be
obtained via G

¯
raph I P

¯
ie Chart, and there are various features available in the

dialog box that can be used to enhance these plots. Pie charts are a common
method for plotting categorical variables.

1.2.6 Time Series Plots

Often, data are collected sequentially in time. In such a context, it is instructive
to plot the values of quantitative variables against time in a time series plot.
For this we use the G

¯
raph I T

¯
ime Series Plot command. A discussion of these

plots can be found in Chapter 18.

1.3 The Normal Distribution

It is important in statistics to be able to do computations with the normal
distribution. The equation of the density curve for the normal distribution with
mean µ and standard deviation σ is given by

1√
2πσ

e−
1
2(

z−µ
σ )

2

where z is a number. We refer to this as the N(µ, σ) (read as normal mu
sigma) density curve or the N(µ, σ) density function. Note that notation for
this function varies by text with many texts calling this the N(µ, σ2) density
function; i.e., the square of σ is used instead. So you have to be careful and
check which notation your text is using.
Also of interest is the area under the density curve from −∞ to a number

x, i.e., the area between the graph of the N(µ, σ) density curve and the interval
(−∞, x]. This is a value between 0 and 1 and is referred to as the value of the
N(µ, σ) distribution function at x.
Sometimes, we specify a value p between 0 and 1 and then want to Þnd

the point xp, such that p of the area under the N(µ, σ) density curve lies over
(−∞, xp]. The point xp is called the pth percentile of the N(µ,σ) density curve.
Alternatively, xp is called the value of the inverse N(µ, σ) distribution function
at p.

1.3.1 Calculating the Density

Suppose that we want to evaluate the N(µ, σ) density function at a value x.
For this, we use the C

¯
alc I Probability D

¯
istributions I N

¯
ormal command. For

example, the dialog box in Display 1.3.1 calculates the N(10, 1) density curve
at the value x = 11.0.
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Display 1.3.1: Dialog box for normal probability calculations.

After clicking on the OK button, the output

Normal with mean = 10 and standard deviation = 1
x f( x )
11 0.241971

is printed in the Session window, which gives the value as 0.241971. Sometimes,
we will want to evaluate the density curve at every value in a column of values,
for example, when we are plotting this curve. For this, we simply click on the
radio button Input column and type the relevant column in the associated box.
The general syntax of the corresponding session command pdf with the

normal subcommand is

pdf E1 . . .Em into Em+1 . . .E2m;
normal mu = V1 sigma = V2.

where E1, ..., Em are columns or constants containing numbers and Em+1, ...,
E2m are the columns or constants that store the values of the N(µ,σ) density
curve at these numbers and V1 = µ and V2 = σ. If no storage is speciÞed, then
the values are printed. For example, if we want to compute the N(−.5, 1.2) den-
sity curve at every value between −3 and 3 in increments of .01, the commands
MTB >set c1
DATA>-3:3/.01
DATA>end
MTB >pdf c1 c2;
SUBC>normal mu=-.5 sigma=1.2.

put the values between −3 and 3 in increments of .01 in C1 using the set
command. The pdf command with the normal subcommand calculates the
N(−.5, 1.2) density curve at each of these values and puts the outcomes in the
corresponding entries of C2. If we plot C2 against C1, we will have a plot of
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the density curve of this distribution. For this, we use the scatterplot facilities
in Minitab as discussed in II.2.1. Note that with the normal subcommand we
must also specify the mean and the standard deviation via mu and sigma.

1.3.2 Calculating the Distribution Function

Suppose that we want to evaluate the area under N(µ, σ) density curve over the
interval (−∞, x]. This is the value of the cumulative distribution function of
the N(µ, σ) distribution at the value x. For this, we use the C

¯
alc I Probability

D
¯
istributions I N

¯
ormal as well, but in this case, in the dialog box of Display

1.3.1, we select Cumulative probability instead. Making this change in the dialog
box of Display 1.3.1, we get the output

Normal with mean = 10 and standard deviation = 1
x P( X <= x )
11 0.841345

in the Session window. Again, we can evaluate this function at a single point
or at every value in a variable.
The general syntax of the corresponding session command cdf command

with the normal subcommand is

cdf E1 . . .Em into Em+1 . . .E2m;
normal mu = V1 sigma = V2.

where E1, ..., Em are columns or constants containing numbers and Em+1, ...,
E2m are the columns or constants that store the values of the area under N(µ, σ)
density curve over the interval from −∞ to these numbers and V1 = µ and V2
= σ. If no storage is speciÞed, the values are printed.

1.3.3 Calculating the Inverse Distribution Function

To evaluate inverse distribution function for the N(µ, σ) distribution, we again
use the C

¯
alc I Probability D

¯
istributions I N

¯
ormal command, but in this case,

in the dialog box of Display 1.3.1, we select Inverse cumulative probability.
Making this change in the dialog box of Display 1.3.1 and replacing 11 by .75�
recall that the argument to this function must be between 0 and 1�we get the
output

Normal with mean = 10 and standard deviation = 1
P( X <= x ) x
0.75 10.6745

in the Session window. This indicates that the area to the left of 10.6745,
underneath the N(10, 1) density curve, is .75.
The general syntax of the corresponding session command invcdf with the

normal subcommand is

invcdf E1 . . .Em into Em+1 . . .E2m;
normal mu = V1 sigma = V2.
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where E1, ..., Em are columns or constants containing numbers between 0 and
1, and Em+1, ..., E2m are the columns or constants that store the values of the
percentiles of the N(µ, σ) density curve at these numbers, and where V1 = µ
and V2 = σ. If no storage is speciÞed, then the values are printed.

1.3.4 Normal Probability Plots

Some statistical procedures require that we assume that values for some variables
are a sample from a normal distribution. A normal probability plot checks for
the reasonableness of this assumption. To create such a plot, we use the G

¯
raph

I Probability
¯
Plot command.

Suppose we want a normal probability plot for the time variable in the
newcomb worksheet. Using G

¯
raph I Probability

¯
Plot, we get the dialog box

in Display 1.3.2, where we have selected Single and then clicked on O
¯
K. This

brings up the dialog box in Display 1.3.3, where we placed time in the Variables
box. Clicking on the S

¯
cale button and then the Y-Scale Type tab produces the

dialog box of Display 1.3.4, where we have Þlled in the Scores option. Clicking
on the O

¯
K button in this and the dialog box of Display 1.3.3 produces the plot

in Display 1.3.5.
The normal probability plot is given by the symbol �. This plot should be

like a straight line. It is not a straight line in this case and would appear to be
clear evidence that the data do not come from a normal distribution. There are
many other features available with these plots and we refer the reader to the
online manual for a discussion of these.
It should be noted that Minitab computes the (normal) scores as follows.

For an observation that has rank i, the normal score is calculated as

Φ−1 ((i− .375) / (n+ .25)) .
In Display 1.3.4, the values (i− .375) / (n+ .25) are referred to as probabilities,
while 100 (i− .375) / (n+ .25) are referred to as percents.
The session commands

MTB >nscores c1 c3
MTB >plot c3*c1

produce a normal probability plot like that shown in Display 1.3.5. The nscores
(normal scores) command computes the score for each observation in C1 and
places this in the corresponding entry of C3. The plot command then plots C3
versus C1 in a scatterplot.



Looking at Data�Distributions 59

Display 1.3.2: First dialog box for producing a normal probability plot.

Display 1.3.3: Second dialog box for producing normal probability plots.

Display 1.3.4: Dialog box for selecting the Y-scale in a normal probability plot.
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Display 1.3.5: Normal probability plot for the time variable in the newcomb
worksheet.

1.4 Exercises

1. Using Newcomb�s measurements in Table 1.1.1, create a new variable by
grouping these values into three subintervals [−50, 0), [0, 20), [20, 50). Cal-
culate the frequency distribution, the relative frequency distribution, and
the cumulative distribution of this ordered categorical variable.

2. Using Newcomb�s measurements in Table 1.1.1, calculate and print the
empirical distribution function. From this, determine the Þrst quartile,
median, and third quartile. Also, use the empirical distribution function
to compute the 10th and 90th percentiles.

3. Consider the following sample of n = 20 data values.

1.3 0.7 0.7 −1.0 2.5 −0.1 −0.2 −0.1 1.7 0.0
1.1 −1.1 2.1 −0.9 −0.3 −1.0 −2.4 −0.6 −0.3 3.3

Produce a stemplot of these data and determine the median.

4. For the data in Exercise 1.3 use an appropriate Minitab command to
determine the minimum, maximum, Þrst and third quartiles and median.

5. Transform the data in Exercise 1.3 by adding 3 to each data value and
repeat Exercise 1.4. What do you notice?

6. Transform the data in Exercise 1.3 by subtracting 5 from each value and
multiplying by 10. Calculate the means and standard deviations, using any
Minitab commands, of both the original and transformed data. Compute
the ratio of the standard deviation of the transformed data to the standard
deviation of the original data. Comment on this value.
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7. Transform the data in Exercise 1.3 by multiplying each value by 3. Com-
pute the ratio of the standard deviation to the mean (called the coefficient
of variation) for the original data and for the transformed data. Justify
the outcome.

8. For the N(6, 1.1) density curve, compute the area between the interval
(3, 5) and the density curve. What number has 53% of the area to the left
of it for this density curve?

9. Use Minitab commands to verify the 68-95-99.7 rule for theN(2, 3) density
curve.

10. Calculate and store the values of the N(0, 1) density curve at each value
in [−3, 3] using an increment of .01. Put the values in the interval [−3, 3]
in C1 and the values of the density curve in C2. Using the command plot
C2*C1, plot the density curve. Comment on the shape of this curve.

11. For the data in Exercise 1.3 produce a normal quantile plot and comment
on the validity of assuming that this is a sample from a normal distribu-
tion.
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Looking at Data: Exploring
Relationships

New Minitab commands discussed in this chapter
G
¯
raph I P

¯
lot

S
¯
tat I B

¯
asic Statistics I C

¯
orrelation

S
¯
tat I R

¯
egression I F

¯
itted Line Plot

S
¯
tat I R

¯
egression I R

¯
egression

In this chapter, Minitab commands that permit the analysis of relationships
among two variables are described. The methods are different depending on
whether both variables are quantitative, both variables are categorical, or one
is quantitative and the other is categorical. This chapter considers relationships
between two quantitative variables with the remaining cases discussed in later
chapters. Graphical methods are very useful in looking for relationships among
variables, and we examine various plots for this.

2.1 Scatterplots

A scatterplot of two quantitative variables is a useful technique when looking
for a relationship between two variables. By a scatterplot we mean a plot of one
variable on the y-axis against the other variable on the x-axis.
For example, consider the data in Table 2.1.1 collected from Þve fossil speci-

mens of the extinct bird Archaeopteryx, where femur is the length in centimeters
of the femur and humerus is the length in centimeters of the humerus. Here we
are concerned with the relationship between the length of the femur and the
length of the humerus. Suppose that we have input the data so that length of
the humerus measurements are in C1, which has been named humerus, and the

63
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length of the femur measurements are in C2, which has been named femur, of
the worksheet archaeopteryx.

humerus 38 56 59 64 74
femur 41 63 70 72 82

Table 2.1.1: Archaeopteryx data.

To plot the values of C2 against C1, we apply the G
¯
raph I S

¯
catterplot

command to the contents of C1 and C2. First, we obtain Display 2.1.1 and from
this we select Simple and click O

¯
K, which leads to the dialog box in Display

2.1.2. We then Þll in C2 for the Y variable and C1 for the X variable. The plot
depicted in Display 2.1.3 is produced in a separate Graph window when we click
on O

¯
K.

Display 2.1.1: Dialog box for selecting the columns in a scatterplot.

Display 2.1.2: Dialog box for selecting the columns in a scatterplot.
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Display 2.1.3: Scatterplot of femur length (C2) versus humerus length (C1).

Note that the plotting symbol used in Display 2.1.3 for each point (x, y) is �.
Alternatives are available. Clicking on D

¯
ata View in the dialog box of Display

2.1.2 leads to the dialog box of Display 2.1.4. If we select Connect line and
plot the graph, we obtain the plot shown in Display 2.1.5. Also, you can add
projection lines (drop a line from each point to the x-axis), and add areas (Þll in
the area under a polygon joining the points). Furthermore, you can employ the
scatterplot smoother lowess to plot a piecewise linear continuous curve through
the scatter of points (look under Smoother). The plot itself can be edited by
clicking on objects in the plot.
There are a number of other features that allow you to control the appearance

of the plot. In particular, you can double click any element of the plot and
possibly modify its appearance according to the selections offered in the drop-
down list that appears. For example, if we double click the plotted curve, we
have the option of changing the plotting symbol and its size. We refer the reader
to the online manual for a full description of this feature.

Display 2.1.4: Dialog box for selecting the appearance of the plotted line.
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Display 2.1.5: Scatterplot with connecting lines.

The corresponding session command is plot. For example,

MTB > plot femur*humerus

produces a plot like that shown in Display 2.1.3. Note that the Þrst variable
is plotted along the y-axis, and the second variable is plotted along the x-axis.
There are various subcommands that can be used with plot, and we refer the
reader to H

¯
elp for a description of these.

2.2 Correlations

While a scatterplot is a convenient graphical method for assessing whether or
not there is any relationship between two variables, we would also like to assess
this numerically. The correlation coefficient provides a numerical summariza-
tion of the degree to which a linear relationship exists between two quantita-
tive variables, and this can be calculated using the S

¯
tat I B

¯
asic Statistics I

C
¯
orrelation command. For example, applying this command to the femur and
humerus variables of the worksheet archaeopteryx, i.e., the data in Table 2.1.1
and depicted in Display 2.1.3, we obtain the output

Pearson correlation of humerus and femur = 0.991
P-Value = 0.001

in the Session window. For now, we ignore the number recorded as P-Value.
The general syntax of the corresponding session command correlate is given

by

correlate E1 . . . Em

where E1, ..., Em are columns corresponding to numerical variables, and a cor-
relation coefficient is computed between each pair. This gives m(m − 1)/2
correlation coefficients. The subcommand nopvalues is available if you want
to suppress the printing of P -values.
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2.3 Regression

Regression is another technique for assessing the strength of a linear relationship
existing between two variables and it is closely related to correlation. For this,
we use the S

¯
tat I R

¯
egression command.

A regression analysis of two quantitative variables involves computing the
least-squares line y = a + bx, where one variable is taken to be the response
variable y and the other is taken to be the explanatory or predictor variable
x. Note that the least-squares line is different depending upon which choice
is made. For example, for the data of the worksheet archaeopteryx, i.e., the
data in Table 2.1.1 and depicted in Display 2.1.3, letting femur be the response
and humerus be the predictor or explanatory variable, the S

¯
tat I R

¯
egression

I R
¯
egression command leads to the dialog box of Display 2.3.1, where we have

made the appropriate entries in the Response and Predictors boxes. Clicking on
the OK button leads to the output of Display 2.3.2 being printed in the Session
window. This gives the least-squares line as y = −1.42+1.15x, i.e., a = −1.420
and b = 1.15155, which we also see under the Coef column in the Þrst table.
In addition, we obtain the value of the square of the correlation coefficient, also
known as the coefficient of determination, as R-Sq = 98.2%. We will discuss
the remaining output from this command in Chapter 10.

Display 2.3.1: Dialog box for a regression analysis.
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Display 2.3.2: Output from the dialog box of Display 2.3.1.

It is very convenient to have a scatterplot of the points together with the
least-squares line. This can be accomplished using the S

¯
tat I R

¯
egression I

F
¯
itted Line Plot command. Filling in the dialog box for this command as in
Display 2.3.1 produces the output in the Session window of Display 2.3.2 to-
gether with the plot of Display 2.3.3.
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femur =  - 1.420 + 1.152 humerus

Display 2.3.3: Scatterplot of femur versus humerus in the archaeopteryx worksheet
together with the least-squares line.
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There are some additional quantities that are often of interest in a regression
analysis. For example, you may wish to have the Þtted values �y = a+bx at each
x value printed as well as the residuals y− �y. Clicking on the Results button in
the dialog box of Display 2.3.1 and Þlling in the ensuing dialog box as in Display
2.3.4 results in these quantities being printed in the Session window as well as
the output of Display 2.3.2.

Display 2.3.4: Dialog box for controlling output for a regression.

You will probably want to keep these values for later work. In this case,
clicking on the Storage button of Display 2.3.1 and Þlling in the ensuing dialog
box as in Display 2.3.5 results in these quantities being saved in the next two
available columns�in this case, C3 and C4�with the names resl1 and fits1
for the residuals and Þts, respectively.

Display 2.3.5: Dialog box for storing various quantities computed in a regression.

Even more likely is that you will want to plot the residuals as part of assessing
whether or not the assumptions that underlie a regression analysis make sense
in the particular application. For this, click on the Graphs button in the dialog
box of Display 2.3.1. The dialog box of Display 2.3.6 becomes available. Notice
that we have requested that the standardized residuals�each residual divided
by its standard error�be plotted, and this plot appears in Display 2.3.7. All the
standardized residuals should be in the interval (−3, 3) , and no pattern should
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be discernible. In this case, this residual plot looks Þne. From the dialog box of
Display 2.3.6, we see that there are many other possibilities for residual plots.

Display 2.3.6: Dialog box for selecting various residual plots as part of a regression.
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Display 2.3.7: Plot of the standardized residuals versus humerus after regressing
femur against humerus in the archaeopteryx worksheet.

The corresponding session command is given by regress, and by using the
subcommands pÞts, residual, and sresidual we can calculate and store Þtted
values, residuals, and standardized residuals, respectively. For example,
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MTB > regress c1 1 c2;
SUBC> fits c3;
SUBC> residuals c4;
SUBC> sresiduals c5.

gives the output of Display 2.3.2 and also stores the Þtted values in C3, stores
the residuals y − �y in C4, and stores the standardized residuals in C5. Note
that the 1 in regress c1 1 c2 refers to the number of predictors we are using
to predict the response variable. To plot the standardized residuals against
humerus, we use

MTB > plot c5*c2

which results in a plot like Display 2.3.7 but with different labels on the x axis.

2.4 Transformations

Sometimes, transformations of the variables are appropriate before we carry
out a regression analysis. This is accomplished in Minitab using the C

¯
alc I

Cal
¯
culator command and the arithmetical and mathematical operations dis-

cussed in Sections I.10.1 and I.10.2. In particular, when a residual plot looks
bad, sometimes this can be Þxed by transforming one or more of the variables
using a simple transformation, such as replacing the response variable by its
logarithm or something else. For example, if we want to calculate the cube
root�i.e., x1/3�of every value in C1 and place these in C2, we use the C

¯
alc I

Cal
¯
culator command and the dialog box as depicted in Display 2.4.1. Alterna-

tively, we could use the session command let as in

MTB > let c2=c1**(1/3)

to produce the same result.

Display 2.4.1: Dialog box for calculating transformations of variables.
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2.5 Exercises

1. Suppose the following data has been collected for two variables x and y,
where y is the response and x is the predictor.

x −0.5 −2.3 1.8 −3.0 2.1 −3.3 1.0 1.3 −1.9
y 0.6 −3.4 7.4 −3.8 7.8 −3.5 3.3 4.9 0.2

Calculate the least-squares line and make a scatterplot of y against x to-
gether with the least-squares line. Plot the standardized residuals against
x. What is the squared correlation coefficient between these variables?

2. Suppose in Exercise 2.5.1 there is another variable z where z takes the
value 1 for the Þrst Þve (x, y) pairs and takes the value 2 for the last
four (x, y) pairs. Make a scatterplot of y against x where the points for
different z are labeled differently (use Minitab for the labeling, too) and
with the least-squares line on it.

3. Place the values 1 through 100 with an increment of .1 in C1 and the
square of these values in C2. Calculate the correlation coefficient between
C1 and C2. Multiply each value in C1 by 10, add 5, and place the results
in C3. Calculate the correlation coefficient between C2 and C3. Why are
these correlation coefficients the same?

4. Place the values 1 through 100 with an increment of .1 in C1 and the
square of these values in C2. Calculate the least-squares line with C2 as
response and C1 as explanatory variable. Plot the standardized residuals.
If you see such a pattern of residuals, what transformation might you use
to remedy the problem?

5. For the data in Exercise 2.5.1, numerically verify the algebraic relationship
that exists between the correlation coefficient and the slope of the least-
squares line using Minitab commands.

6. For the data in Exercise 2.5.1, calculate the sum of the residuals and the
sum of the squared residuals divided by the number of data points minus
2. Is there anything you can say about what these quantities are equal to
in general?

7. Place the values 1 through 10 with an increment of .1 in C1, and place
x3 of these values in C2. Calculate the least-squares line using C2 as the
response variable, and plot the standardized residuals against C1. What
transformation would you use to remedy this residual plot? What is the
least-squares line when you carry out this transformation?

8. Place the values 1 through 10 with an increment of .1 in C1, and place
exp (−1 + 2x) of these values in C2. Calculate the least-squares line using
C2 as the response variable, and plot the standardized residuals against
C1. What transformation would you use to remedy this residual plot?
What is the least-squares line when you carry out this transformation?
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Producing Data

New Minitab commands discussed in this chapter
C
¯
alc I Set B

¯
ase

C
¯
alc I R

¯
andom Data

This chapter is concerned with the collection of data, perhaps the most impor-
tant step in a statistical problem, as this determines the quality of whatever
conclusions are subsequently drawn. A poor analysis can be Þxed if the data
are collected correctly by simply redoing the analysis. But if the data have
not been appropriately collected, then no amount of analysis can rescue the
study. We discuss Minitab commands that enable you to generate samples from
populations and also to randomly allocate treatments to experimental units.
Minitab uses computer algorithms to mimic randomness. Still, the results

are not truly random. In fact, any simulation in Minitab can be repeated, with
exactly the same results being obtained, using the C

¯
alc I Set B

¯
ase command.

For example, in the dialog box of Display 3.1, we have speciÞed the base, or
seed, random number as 1111089. The base can be any integer. When you
want to repeat the simulation, you give this command, with the same integer.
Provided you use the same simulation commands, you will get the same results.
This can also be accomplished using the session command base V, where V is
an integer.

Display 3.1: Dialog box for setting base or seed random number.

73
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3.1 Generating a Random Sample

Suppose that we have a large population of size N and we want to select a
sample of n < N from the population. Further, we suppose that the elements
of the population are ordered; i.e., we have been able to assign a unique number
1, . . . , N to each element of the population. To avoid selection biases, we want
this to be a random sample; i.e., every subset of size n from the population has
the same �chance� of being selected. This implies that we generate our sample
so that every subset of size n in the population has the same chance of being
chosen. We can do this physically by using some simple random system, such as
chips in a bowl or coin tossing. We could also use a table of random numbers,
or, more conveniently, we can use computer algorithms that mimic the behavior
of random systems.
For example, suppose there are 1000 elements in a population, and we want

to generate a sample of 50 from this population without replacement. We can
use the C

¯
alc I R

¯
andom Data I Sample from C

¯
olumns command to do this.

For example, suppose we have labeled each element of the population with a
unique number in 1, 2, . . . , 1000, and, further, we have put these numbers in C1
of a worksheet. The dialog box of Display 3.1.1 results in a random sample of
50 being generated without replacement from C1 and stored in C2.

Display 3.1.1: Dialog box for generating a random sample without replacement.

Printing this sample gives the output

MTB > print c2
C2
211 609 690 869 257 145 700 756 830 864 953 155 747
238 271 557 740 551 249 450 167 900 702 599 555 85
926 933 628 21 880 191 189 750 804 991 47 53 202
918 188 479 118 988 244 644 878 729 353 411

in the Session window. So now we go to the population and select the elements
labeled 211, 609, 690, etc. The algorithm that underlies this command is such
that we can be conÞdent that this sample of 50 is like a random sample.
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Sometimes we want to generate random permutations, i.e., n = N , and we
are simply reordering the elements of the population. For example, in exper-
imental design, suppose we have N = n1 + · · · + nk experimental units and
k treatments, and we want to allocate ni applications of treatment i. Suppose
further that we want all possible such applications to be equally likely. Then we
generate a random permutation (l1, . . . , lN) of (1, . . . , N) and allocate treatment
1 to those experimental units labeled l1, . . . , ln1 , allocate treatment 2 to those
experimental units labeled ln1+1, . . . , ln1+n2 , etc. For example, if we have 30
experimental units and 3 treatments and we want to allocate 10 experimental
units to each treatment, placing the numbers 1, 2, . . . , 30 in C1 and using the
C
¯
alc I R

¯
andom Data I Sample from C

¯
olumns command as in the dialog box of

Display 3.1.1, but with 30 in the Sample box, generates a random permutation
of 1, 2, . . . , 30 in C2. Implementing this gives us the random permutation

MTB > print c2
C2
13 7 26 8 22 23 28 17 3 25
9 2 14 29 15 18 6 11 16 5
12 27 4 30 20 24 1 19 21 10

and for the treatment allocation you can read the numbers row-wise or column-
wise, as long as you are consistent. Row-wise is probably best, as this is how the
numbers are stored in C2, and so you can always refer back to C2 (presuming
you save your worksheet) if you get mixed up.
The above examples show how to directly generate a sample from a popu-

lation of modest size. But what happens if the population is huge or it is not
convenient to label each unit with a number? For example, suppose we have
a population of size 100,000 for which we have an ordered list and we want a
sample of size 100. In this case, more sophisticated techniques need to be used,
but simple random sampling can still typically be accomplished (see Exercise
3.3 for a simple method that works in some contexts).
Simple random sampling corresponds to sampling without replacement; i.e.,

after we randomly select an element from the population, we do not return
it to the population before selecting the next sample element. Sampling with
replacement corresponds to replacing each sample element in the population
after selecting it and recording only the element that was obtained. So at each
selection, every element has the same chance of being selected, and an element
may appear more than once in the sample. Notice that we can also sample with
replacement if we check the Sample with replacement box in the dialog box of
Display 3.1.1.
The general syntax of the corresponding session command sample is

sample V E1 . . . Em put into Em+1 . . . E2m

where V is the sample size n and V rows are sampled from the columns E1,
..., Em and stored in columns Em+1, ..., E2m. If we wanted to sample with
replacement�i.e., after a unit is sampled, it is placed back in the population so
that it can possibly be sampled again�we use the replace subcommand. Of
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course, for simple random sampling, we do not use the replace subcommand.
Note that the columns can be numeric or text.

3.2 Sampling from Distributions

Once we have generated a sample from a population, we measure various at-
tributes of the sampled elements. For example, if we were sampling from a pop-
ulation of humans, we might measure each sampled unit�s height. The height for
the sample unit is now a random variable that follows the height distribution in
the population from which we are sampling. For example, if 80% of the people
in the population are between 4.5 feet and 6 feet, then under repeated sampling
of an element from the population (with replacement) in the long run, 80% of
the sampled units will have their heights in this range.
Sometimes, we want to sample directly from this population distribution;

i.e., generate a number in such a way that under repeated sampling in the long
run the proportion of values falling in any range agrees with that prescribed by
the population distribution. Of course, we typically don�t know the population
distribution, as this is what we want to Þnd out about in a statistical investi-
gation. Still, there are many instances where we want to pretend that we do
know it and simulate from this distribution; for example, perhaps we want to
consider the effect of various choices of population distribution on the sampling
distribution of some statistic of interest.
There are computer algorithms that allow us to do this for a variety of

distributions. In Minitab, this is accomplished using the C
¯
alc I R

¯
andom Data

command. For example, suppose that we want to simulate the tossing of a fair
coin (a coin where head and tail are equally likely as outcomes). The C

¯
alc I

R
¯
andom Data I Bernoulli command together with the dialog box of Display
3.2.1 generates a sample of 100 from the Bernoulli(.5) distribution and places
these values in C1. A random variable has a Bernoulli(p) distribution if the
probability the variable equals 1�success�is p and the probability the variable
equals 0�failure�is 1− p. So to generate a sample of n from the Bernoulli(p)
distribution, we put n in the Number of rows to generate box and p in the
Event probability box. In such a case, we are simulating the tossing of a coin
that produces a head on a single toss with probability p; i.e., the long-run
proportion of heads that we observe in repeated tossing is p. Note that we can
generate m samples of size n by putting m distinct columns in the Store in
column(s) box.
Often, a normal distribution with some particular mean and standard devia-

tion is considered a reasonable assumption for the distribution of a measurement
in a population. For example, the C

¯
alc I R

¯
andom Data I N

¯
ormal command

together with the dialog box of Display 3.2.2 generates a sample of 200 from
the N(3.0, 0.4) distribution and places this sample in C1. To generate a sample
of n from the N(µ, σ) distribution, we put n in the Number of rows to generate
box, µ in the Mean box, and σ in the Standard deviation box.
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Display 3.2.1: Dialog box for generating a sample form a Bernoulli distribution.

Display 3.2.2: Dialog box for generating a sample of 200 from a N(3.0, 0.4)
distribution.

The general syntax of the corresponding session command random is

random V into E1 . . . Em

and this puts a sample of size V into each of the columns E1, ..., Em, according
to the distribution speciÞed by the subcommand. For example,

MTB > random 100 c1;
SUBC> bernoulli .5.

simulates the tossing of a fair coin 100 times and places the results in C1 using
the bernoulli subcommand. If no subcommand is provided, this distribution
is taken to be the N(0, 1) distribution. The command
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MTB > random 200 c1;
SUBC> normal mu=2.1 sigma=3.3.

generates a sample of 200 from the N(2.1, 3.3) distribution using the normal
subcommand. There are a number of other subcommands specifying distribu-
tions, and we refer the reader to help for a description of these.

3.3 Exercises

If your version of Minitab places restrictions such that the value of the simula-
tion sample size N requested in these problems is not feasible, then substitute a
more appropriate value. Be aware, however, that the accuracy of your results is
dependent on how large N is.

1. Enter 10 names into column C1 in alphabetical order and then generate
a random permutation of the names storing the result in C2.

2. Use Minitab to generate a random sample of 50 from {1, 2, . . . , 100} . Next
generate a sample of 50 with replacement. Explain the difference between
these samples.

3. Use the following methodology to generate a sample of 20 from a pop-
ulation of 100,000. First, put the values 0�9 in each of C1�C5. Next,
use sampling with replacement to generate 50 values from C1, and put
the results in C6. Do the same for each of C2�C5 and put the results
in C7�C10 (don�t generate from these columns simultaneously). Create a
single column of numbers using the digits in C6�C10 as the digits in the
numbers. Pick out the Þrst unique 20 entries as labels for the sample. If
you do not obtain 20 unique values, repeat the process until you do. Why
does this work?

4. Suppose you wanted to carry out stratiÞed sampling where there are three
strata, with the Þrst stratum containing 500 elements, the second stratum
containing 400 elements, and the third stratum containing 100 elements.
Generate a stratiÞed sample with 50 elements from the Þrst stratum, 40
elements from the second stratum, and 10 elements from the third stratum.
When the strata sample sizes are the same proportion of the total sample
size as the strata population sizes are of the total population size this is
called proportional sampling.

5. Suppose we have an urn containing 100 balls with 20 labeled 1, 50 la-
beled 2, and 30 labeled 3. Using sampling with replacement, generate a
sample of size 1000 from this distribution employing the C

¯
alc I R

¯
andom

Data command to generate the sample directly from the relevant popu-
lation distribution. Use the S

¯
tat I T

¯
ables I T

¯
ally Individual Variables

command to record the count of each label in the sample.
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6. Suppose we toss a coin n times and then estimate the probability p of
getting a head on a single toss by the proportion of heads in the sample �p.
Carry out a simulation study with N = 1000 of the sampling distribution
of �p for n = 5, 10, 20 and for p = .5, .75, .95. In particular, calculate the
empirical distribution functions and plot the histograms. Comment on
your Þndings.

7. Carry out a simulation study with N = 2000 of the sampling distribution
of the sample standard deviation when sampling from the N(0, 1) distri-
bution based on a sample of size n = 5. In particular, plot the histogram
using cutpoints 0, 1.5, 2.0 2.5, 3.0 5.0. Repeat this for the sample coeffi-
cient of variation (sample standard deviation divided by the sample mean)
using the cutpoints −10, −9, ..., 0, ..., 9, 10. Comment on the shapes of
the histograms relative to an N(0, 1) density curve.
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Probability:The Study of
Randomness

Probability theory underlies the powerful computational methodology known as
simulation, which we introduced in Chapter 3. Simulation has many applications
in probability and statistics and also in many other Þelds, such as engineering,
chemistry, physics, and economics.

4.1 Basic Probability Calculations

The calculation of probabilities for random variables can often be simpliÞed
by tabulating the cumulative distribution function. Also, means and variances
are easily calculated using component-wise column operations in Minitab. For
example, suppose we have the probability distribution

x 1 2 3 4
probability .1 .2 .3 .4

in columns C1 and C2, with the values in C1 and the probabilities in C2. The
C
¯
alc I Cal

¯
culator command with the dialog box as in Display 4.1.1 computes

the cumulative distribution function in C3 using Partial Sums.

81
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Display 4.1.1: Dialog box for computing partial sums of entries in C2 and placing
these sums in C3.

Printing C1 and C3 gives

Row C1 C3
1 1 0.1
2 2 0.3
3 3 0.6
4 4 1.0

in the Session window. We can also easily compute the mean and variance of
this distribution. For example, the session commands

MTB > let c4=c1*c2
MTB > let c5=c1*c1*c2
MTB > let k1=sum(c4)
MTB > let k2=sum(c5)-k1*k1
MTB > print k1 k2
K1 3.00000
K2 1.00000

calculate the mean and variance and store these in K1 and K2, respectively. The
mean is 3 and the variance is 1. Of course, we can also use C

¯
alc I Cal

¯
culator

to do these calculations. In presenting more extensive computations, it is some-
what easier to list the appropriate session commands, as we will do subsequently.
However, this is not to be interpreted as the required way to do these compu-
tations, as it is obvious that the menu commands can be used as well. Use
whatever you Þnd most convenient.
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4.2 More on Sampling from Distributions

As we saw in Section 3.2, Minitab includes algorithms for generating from many
probability distributions using C

¯
alc I R

¯
andom Data. This menu command

produces a drop-down list that includes the normal, binomial, Chi-square, F , t,
uniform, and many other distributions. Clicking on one of these names results
in a dialog box with entries to be Þlled in further specifying the distribution
and the size of the sample.
For example, we can generate from one particularly important class of prob-

ability distributions using C
¯
alc I R

¯
andom Data I D

¯
iscrete. These probability

distributions are concentrated on a Þnite number of values. To illustrate this,
suppose we have the following values in C1 and C2.

Row C1 C2
1 -1 0.3
2 2 0.2
3 3 0.4
4 10 0.1

Here, C1 contains the possible values of an outcome, and C2 contains the prob-
abilities that each of these values is obtained, so, for example, P ({−1}) =
.3, P ({2}) = .2, etc. The dialog box of Display 4.2.1 generates a sample of 50
from this discrete distribution and stores the sample in C3.

Display 4.2.1: Dialog box for generating a sample from a discrete distribution with
values in C1 and probabilities in C2 and storing the sample in C3.

It is an interesting exercise to check that the algorithms Minitab is using are
in fact producing samples appropriately. There are a variety of things one could
check, but perhaps the simplest is to check that the long-run relative frequencies
are correct. So in the example of this section, we want to make sure that, as
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we increase the size of the sample, the relative frequencies of −1, 2, 3, 10 in the
sample are getting closer to .3, .2, .4, and .1, respectively. Note that it is not
guaranteed that as we increase the sample size that the relative frequencies get
closer monotonically to the corresponding probabilities, but inevitably this must
be the case.
First, we generated a sample of size 100 from this distribution and stored

the values in C3 as in Display 4.2.1. Next, we recorded a 1 in C4 whenever the
corresponding entry in C3 was −1 and recorded a 0 in C4 otherwise. To do this,
we used the C

¯
alc I Cal

¯
culator command with dialog box as shown in Display

4.2.2.

Display 4.2.2: Dialog box to record the incidence of a −1 in C3.
It is clear that the mean of C4 is the relative frequency of −1 in the sample.
We calculated this mean using C

¯
alc I C

¯
olumn Statistics, as discussed in I.10.4,

which gave the output

Mean of C4 = 0.33000

in the Session window. Repeating this with a sample of size 1000, we obtained

Mean of C4 = 0.28100

which we can see is a bit closer to the true value of .3. Repeating this with a
sample of size 10, 000 from this distribution, we obtained

Mean of C4 = 0.29300

which is closer still. It would appear that the relative frequency of −1 is indeed
converging to .3.
We can generate a randomly chosen point from the line interval (a, b) , where

a < b, using C
¯
alc I R

¯
andom Data I U

¯
niform. For example, the dialog box
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of Display 4.2.3 generates a sample of 1500 from the uniform distribution on
the interval (3.0, 6.3) .With this distribution, the probability of any subinterval
(c, d) of (a, b) is given by (d− c) / (b− a), i.e., the length of (c, d) over the length
of (a, b). Of course, we can estimate this probability by just counting the number
of times the generated response falls in the interval (c, d) and dividing this by
the total sample size. For example, using the outcomes from the dialog box of
Display 4.2.3 and estimating the probability of the interval (4, 5), we get the
relative frequency 0.30867, which is close to the true value of (5− 4) / (6.3− 3) =
0.30303.

Display 4.2.3: Dialog box for generating a sample of 1500 from a Uniform(3, 6.3)
distribution and storing the sample in C3.

We can generalize this to generate from a point randomly chosen from a
rectangle (a, b)× (c, d), i.e., the set of all points (x, y) such that a < x < b, c <
y < d. If we want a sample of n from this distribution, we generate a sample
x1, . . . , xn from the uniform on (a, b) and also generate a sample y1, . . . , yn from
the uniform distribution on (c, d). Then (x1, y1) , . . . , (xn, yn) is a sample of
n from the uniform distribution on (a, b) × (c, d). We can approximate the
probability of a random pair (x, y) falling in any subset A ⊂ (a, b) × (c, d) by
computing the relative frequency of A in the sample.
The random command is the session command for carrying out simulations

in Minitab. For example, the subcommand

uniform V1 V2

speciÞes the continuous uniform distribution on the interval (V1,V2); i.e., subin-
tervals of the same length have the same probability of occurring. If we have
placed a discrete probability distribution in column E2, on the values in column
E1, the subcommand
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discrete E1 E2

generates a sample from this distribution.

4.3 Simulation for Approximating Probabilities

As previously noted, simulation can be used to approximate probabilities. For
a variety of reasons, these simulations are most easily presented using session
commands, but it is clear that we can replace each step by the appropriate menu
command.
For example, suppose we are asked to calculate

P (.1 ≤ X1 +X2 ≤ .3)

when X1,X2 are both independent and follow the uniform distribution on the
interval (0, 1) . The session commands

MTB > random 1000 c1 c2;
SUBC> uniform 0 1.
MTB > let c3=c1+c2
MTB > let c4 = .1<=c3 and c3<=.3
MTB > let k1=sum(c4)/n(c4)
MTB > print k1
K1 0.0400000
MTB > let k2=sqrt(k1*(1-k1)/n(c4))
MTB > print k2
K2 0.00619677
MTB > let k3=k1-3*k2
MTB > let k4=k1+3*k2
MTB > print k3 k4
K3 0.0214097
K4 0.0585903

generate N = 1000 independent values of X1,X2 and place these values in C1
and C2, respectively, then calculate the sum X1 +X2 and put these values in
C3. Using the comparison operators discussed in I.10.3, a 1 is recorded in C4
every time .1 ≤ X1 +X2 ≤ .3 is true and a 0 is recorded there otherwise. We
then calculate the proportion of 1�s in the sample as K1, and this is our estimate
�p of the probability. We will see later that a good measure of the accuracy of
this estimate is the standard error of the estimate, which in this case is given
by p

�p (1− �p) /N,
and this is computed in K2. Actually, we can feel fairly conÞdent that the true
value of the probability is in the interval

�p± 3
p
�p (1− �p) /N,
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which, in this case, equals the interval (0.0214097, 0.0585903). So we know the
true value of the probability with reasonable accuracy. As the simulation size
N increases, the Law of Large Numbers says that �p converges to the true value
of the probability.

4.4 Simulation for Approximating Means

The means of distributions can be approximated using simulations in Minitab.
For example, suppose X1,X2 are both independent and follow the uniform
distribution on the interval (0, 1) and that we want to calculate the mean of
Y = 1/ (1 +X1 +X2) . We can approximate this in a simulation. The session
commands

MTB > random 1000 c1 c2;
SUBC> uniform 0 1.
MTB > let c3=1/(1+c1+c2)
MTB > let k1=mean(c3)
MTB > let k2=stdev(c3)/sqrt(n(c3))
MTB > print k1 k2
K1 0.521532
K2 0.00375769
MTB > let k3=k1-3*k2
MTB > let k4=k1+3*k2
MTB > print k3 k4
K3 0.510259
K4 0.532805

generate N = 1000 independent values of X1,X2 and place these values in C1,
C2, then calculate Y = 1/ (1 +X1 +X2) and put these values in C3. The mean
of C3 is stored in K1, and this is our estimate of the mean value of Y . As a
measure of how accurate this estimate is, we compute the standard error of the
estimate, which is given by the standard deviation divided by the square root
of the simulation sample size N . Again, we can feel fairly conÞdent that the
interval given by the estimate plus or minus 3 times the standard error of the
estimate contains the true value of the mean. In this case, this interval is given
by (0.510259, 0.532805), and so we know this mean with reasonable accuracy.
As the simulation size N increases, the Law of Large Numbers says that the
approximation converges to the true value of the mean.

4.5 Exercises

If your version of Minitab places restrictions such that the value of the simula-
tion sample size N requested in these problems is not feasible, then substitute a
more appropriate value. Be aware, however, that the accuracy of your results is
dependent on how large N is.
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1. Suppose we have the probability distribution

x 1 2 3 4 5
probability .15 .05 .33 .37 .10

on the values 1, 2, 3, 4, and 5. Calculate the mean and variance of this
distribution. Suppose that three independent outcomes (X1,X2,X3) are
generated from this distribution. Compute the probability that 1 < X1 ≤
4, 2 ≤ X2 and 3 < X3 ≤ 5.

2. Suppose we have the probability distribution

x 1 2 3 4 5
probability .15 .05 .33 .37 .10

on the values 1, 2, 3, 4, and 5. Using Minitab, verify that this is a
probability distribution. Make a bar chart (probability histogram) of this
distribution. Generate a sample of size 1000 from this distribution and
plot a relative frequency histogram for the sample.

3. Indicate how you would simulate the game of roulette using Minitab.
Based on a simulation of N = 1000, estimate the probability of getting
red and a multiple of 3.

4. A probability distribution is placed on the integers 1, 2, ..., 100, where the
probability of integer i is c/i2. Determine c so that this is a probability
distribution. What is the 90th percentile? Generate a sample of 20 from
the distribution.

5. Suppose an outcome is random on the square (0, 1)× (0, 1). Using simula-
tion, approximate the probability that the Þrst coordinate plus the second
coordinate is less than .75 but greater than .25.

6. Generate a sample of 1000 from the uniform distribution on the unit disk
D =

©
(x, y) : x2 + y2 ≤ 1ª .

7. The expression e−x for x > 0 is the density curve for what is called the
Exponential(1) distribution. Plot this density curve in the interval from 0
to 10 using an increment of .1. The C

¯
alc I R

¯
andom Data I Ex

¯
ponential

command can be used to generate from this distribution by specifying the
Mean as 1 in the ensuing dialog box. Generate a sample of 1000 from this
distribution and estimate its mean. Approximate the probability that a
value generated from this distribution is in the interval (1,2). The general
Exponential(λ) has a density curve given by λ−1e−x/λ for x > 0 and where
λ > 0 is the mean. Repeat the simulation with mean λ = 3. Comment on
the values of the estimated means.

8. Suppose you carry out a simulation to approximate the mean of a random
variable X and you report the value 1.23 with a standard error of .025.
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If you are asked to approximate the mean of Y = 3 + 5X, do you have
to carry out another simulation? If not, what is your approximation, and
what is the standard error of this approximation?

9. Suppose that a random variable X follows an N(3, 2.3) distribution. Sub-
sequently, conditions change and no values smaller than −1 or bigger than
9.5 can occur; i.e., the distribution is conditioned to the interval (−1, 9.5).
Generate a sample of 1000 from the truncated distribution, and use the
sample to approximate its mean.

10. Suppose that X is a random variable and follows an N(0, 1) distribution.
SimulateN = 1000 values from the distribution of Y = X2, and plot these
values in a histogram with cutpoints 0, .5, 1, 1.5, ..., 15. Approximate the
mean of this distribution. Generate Y directly from its distribution, which
is known to be a Chi-square(1) distribution. In general, the Chi-square(k)
distribution can be generated from via the command C

¯
alcI R

¯
andom Data

I C
¯
hi-Square, where k is speciÞed as the Degrees of freedom in the dialog

box. Plot the Y values in a histogram using the same cutpoints. Comment
on the two histograms. Note that you can plot the density curve of these
distributions using C

¯
alc I Probability D

¯
istributions I C

¯
hi-Square and

evaluating the probability density at a range of points as we discussed in
II.2 for the normal distribution.

11. If X1 and X2 are independent random variables with X1 following a Chi-
square(k1) distribution and X2 following a Chi-square(k2) distribution,
then it is known that Y = X1 + X2 follows a Chi-square(k1 + k2) distri-
bution. For k1 = 1, k2 = 1, verify this empirically by plotting a density
histogram with cutpoints 0, .5, 1, 1.5, ..., 15, based on two samples of size
N = 1000 from the Chi-square(1) distribution and compare this with a
plot of the Chi-square(2) density curve.

12. If X1 and X2 are independent random variables with X1 following an
N(0, 1) distribution and X2 following a Chi-square(k) distribution, then
it is known that

Y =
X1p
X2/k

follows a Student(k) distribution. The Student(k) distribution can be
generated from using the command C

¯
alc I R

¯
andom Data I t

¯
, where k is

the D
¯
egrees of freedom and must be speciÞed in the dialog box. For k = 3,

verify this result empirically by plotting histograms with cutpoints −10,
−9, ..., 9, 10, based on simulations of size N = 1000; i.e., generate 1000
values of (X1,X2), plot a density histogram of the Y values, and compare
this with a plot of the density curve of a Student(3) distribution.

13. If X1 and X2 are independent random variables with X1 following a Chi-
square(k1) distribution and X2 following a Chi-square(k2) distribution,
then it is known that
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Y =
X1/k1
X2/k2

follows an F (k1, k2) distribution. The F (k1, k2) distribution can be gen-
erated from using the subcommand C

¯
alc I R

¯
andom Data I F

¯
, where k1

is the Numerator degrees of freedom and k2 is the Denominator degrees
of freedom, both of which must be speciÞed in the dialog box. For k1 = 1,
k2 = 1, verify this empirically by plotting histograms with cutpoints 0, .5,
1, 1.5, ..., 15, based on simulations of size N = 1000; i.e., generate 1000
values of (X1,X2), plot a density histogram of the Y values, and compare
this with a plot of the density curve of a F (1, 1) distribution.
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Sampling Distributions

New Minitab command discussed in this chapter
C
¯
alc I Probability D

¯
istributions I B

¯
inomial

Once data have been collected, they are analyzed using a variety of statistical
techniques. Virtually all of these involve computing statistics that measure
some aspect of the data concerning questions we wish to answer. The answers
determined by these statistics are subject to the uncertainty caused by the fact
that we typically do not have the full population but only a sample from the
population. As such, we have to be concerned with the variability in the answers
when different samples are obtained. This leads to a concern with the sampling
distribution of a statistic.
Sometimes, the sampling distribution of a statistic can be worked out exactly

through various mathematical techniques; for example, it can be shown that
the number of 1�s in a sample of n from a Bernoulli(p) distribution follows a
Binomial(n, p) distribution. Often, however, this is not possible, and we must
resort to approximations. One approximation technique is to use simulation.
Sometimes, however, the statistics we are concerned with are averages, and,
in such cases, the central limit theorem justiÞes approximating the sampling
distribution via an appropriate normal distribution.

5.1 The Binomial Distribution

Suppose that X1, . . . ,Xn is a sample from the Bernoulli(p) distribution; i.e.,
X1, . . . ,Xn are independent realizations, where each Xi takes the value 1 or
0 with probabilities p and 1 − p, respectively. The random variable Y =
X1+· · ·+Xn equals the number of 1�s in the sample and follows a Binomial(n, p)
distribution. Therefore, Y can take on any of the values 0, 1, . . . , n with posi-
tive probability. In fact, an exact formula can be derived for these probabilities;

91
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namely, P (Y = k) =
¡
n
k

¢
pk(1−p)n−k is the probability that Y takes the value k

for 0 ≤ k ≤ n. When n and k are small, this formula could be used to evaluate
this probability, but it is almost always better to use software like Minitab to do
it, and when these values are not small, it is necessary. Also, we can use Minitab
to compute the Binomial(n, p) cumulative probability distribution�the prob-
ability contents of intervals (−∞, x] and the inverse cumulative distribution�
quantiles of the distribution.
For individual probabilities, we use the C

¯
alc I Probability D

¯
istributions I

B
¯
inomial command. For example, suppose we have a Binomial (30, .2) distrib-
ution and want to compute the probability P (Y = 10). This command, with
the dialog box as in Display 5.1.1, produces the output (note Minitab uses the
notation p instead of p for the probability of success)

Binomial with n = 30 and p = 0.200000

x P( X = x )

10.00 0.0354709

in the Session window, i.e., P (Y = 10) = 0.0354709.

Display 5.1.1: Dialog box for Binomial(n, p) probability calculations.

If we want to compute the probability of getting 10 or fewer successes (this
is the probability of the interval (−∞, 10]) we can use the C

¯
alc I Probability

D
¯
istributions I B

¯
inomial command with the dialog box as in Display 5.1.2.

This produces the output

Binomial with n = 30 and p = 0.200000

x P( X <= x )

10.00 0.974384

in the Session window, i.e., P (Y ≤ 10) = 0.974384.
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Display 5.1.2: Dialog box for computing cumulative probabilities for the
Binomial(n, p) distribution.

Suppose we want to compute the Þrst quartile of this distribution. The C
¯
alc

I Probability D
¯
istributions I B

¯
inomial command, with the dialog box as in

Display 5.1.3, produces the output

Binomial with n = 30 and p = 0.200000
x P( X <= x ) x P( X <= x )
3 0.122711 4 0.255233

in the Session window. This gives the values x that have cumulative probabilities
just smaller and just larger than the value requested. Recall that with a discrete
distribution, such as the Binomial(n, p), we will not in general be able to obtain
an exact quantile.

Display 5.1.3 Dialog box for computing percentiles of the Binomial(n, p)
distribution.
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These commands can operate on all the values in a column simultaneously.
This is very convenient if you should want to tabulate or graph the probability
function, cumulative distribution function, or inverse distribution function.
The corresponding session commands are pdf (for calculating the probability

function), cdf (for calculating the cdf), and invcdf (for calculating the inverse
cdf) used with the binomial subcommand. For example,
MTB > pdf 10;
SUBC> binomial 30 .2.

outputs P (Y = 10) when Y has the Binomial(30, .2) distribution.

5.2 Simulating Sampling Distributions
First, we consider an example where we know the exact sampling distribution.
Suppose we ßip a possibly biased coin n times and want to estimate the unknown
probability p of getting a head. The natural estimate is �p the proportion of heads
in the sample. We would like to assess the sampling behavior of this statistic
in a simulation. To do this, we choose a value for p, then generate N samples
from the Bernoulli distribution of size n; for each of these compute �p, look at
the empirical distribution of these N values, perhaps plotting a histogram as
well. The larger N is the closer the empirical distribution and histogram will
be to the true sampling distribution of �p.
Note that there are two sample sizes here: the sample size n of the original

sample the statistic is based on, which is Þxed, and the simulation sample size
N , which we can control. This is characteristic of all simulations. Sometimes,
using more advanced analytical techniques we can determine N so that the
sampling distribution of the statistic is estimated with some prescribed accuracy.
These methods are referred to as setting the sample size. Another method is
to increase N until we see the results stabilize. This is sometimes the only way
available, but caution should be shown as it is easy for simulation results to be
very misleading if the Þnal N is too small.
We illustrate a simulation to determine the sampling distribution of �p when

sampling from a Bernoulli(.75) distribution. For this, we use the commands
C
¯
alc I R

¯
andom Data I Be

¯
rnoulli, C

¯
alc I Ro

¯
w Statistics, and S

¯
tat I T

¯
ables I

T
¯
ally Individual Variables, with the dialog boxes given by Displays 5.2.1, 5.2.2,
and 5.2.3, respectively, to produce the output
Summary Statistics for Discrete Variables
C11 CumPct
0.3 0.40
0.4 2.20
0.5 7.60
0.6 23.10
0.7 47.70
0.8 78.00
0.9 94.70
1.0 100.00
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in the Session window. Here we have generated N = 1000 samples of size n = 10
from the Bernoulli(.75) distribution; i.e., we simulated the tossing of this coin
10,000 times, and we placed the results in the rows of columns C1�C10 using
C
¯
alc I R

¯
andom Data I Be

¯
rnoulli. The proportion of heads �p in each sample

is computed and placed in C11 using C
¯
alc I Ro

¯
w Statistics. Note that a mean

of values equal to 0 or 1 is just the proportion of 1�s in the sample. Finally,
we used S

¯
tat I T

¯
ables I T

¯
ally Individual Variables to compute the empirical

distribution function of these 1000 values of �p. For example, this says 78% of
these values were .8 or smaller and there were no instances smaller than .3. In
Display 5.2.4, we have plotted a density histogram of the 1000 values of �p, and
this gives a rough idea of the shape of the sampling distribution.

Display 5.2.1: Dialog box for generating 10 columns of 1000 Bernoulli(.75) values.

Display 5.2.2: Dialog box for computing the proportion of 1�s in each of the 1000
samples of size 10.
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Display 5.2.3: Dialog box for computing the empirical distribution function of �p.

Display 5.2.4: Density histogram of simulation of N = 1000 values of �p based on a
sample of size n = 10 from the Bernoulli(.75) distribution.

The corresponding session commands for this simulation are

MTB > random 1000 c1-c10;
SUBC> bernoulli .75.
MTB > rmean c1-c10 c11
MTB > tally c11;
SUBC> cumpcts.

and these might seem like an easier way to implement the simulation.
As mentioned previously, the sampling distribution of �p can be determined

exactly; i.e., there are formulas to determine this, so really there is no need for
a simulation in this case. Still, it illustrates how such a simulation proceeds in
more general circumstances.
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Furthermore, we can simulate directly from the sampling distribution of �p,
so this simulation can be made much more efficient. In effect, this entails using
the C

¯
alc I R

¯
andom Data I Binomial command with dialog box as in Display

5.2.5 and dividing each entry in C1 by 10. This generates N = 1000 values of
�p but uses a much smaller number of cells. Still, there are many statistics for
which this kind of efficiency reduction is not available, and, to get some idea of
what their sampling distribution is like, we must resort to the more brute force
form of simulation of generating directly from the population distribution.
Sometimes, more sophisticated simulation techniques are needed to get an

accurate assessment of a sampling distribution. Within Minitab, there are pro-
gramming techniques, which we do not discuss in this manual, that can be
applied in such cases. For example, it is clear that if our simulation required
the generation of 106 cells (and this is not at all uncommon for some harder
problems), the simulation approach we have described would not work, as the
worksheet would be too large.

Display 5.2.5: Dialog box for generating 1000 values from the sampling distribution
of 10�p using the Binomial(10, .75) distribution.

5.3 Exercises

If your version of Minitab places restrictions such that the value of the simula-
tion sample size N requested in these problems is not feasible, then substitute a
more appropriate value. Be aware, however, that the accuracy of your results is
dependent on how large N is.

1. Calculate all the probabilities for the Binomial(5, .4) distribution and the
Binomial(5, .6) distribution. What relationship do you observe? Can you
explain this and state a general rule?

2. Compute all the probabilities for a Binomial(5, .8) distribution and use
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these to directly calculate the mean and variance. Verify your answers
using the formulas provided in your text.

3. Compute and plot the probability and cumulative distribution functions
of the Binomial(10, .2) and the Binomial(10, .5) distributions. Comment
on the shapes of these distributions.

4. Generate 1000 samples of size 10 from the Bernoulli(.3) distribution. Com-
pute the proportion of 1�s in each sample and compute the proportion of
samples having no 1�s, one 1, two 1�s, etc. Compute what these propor-
tions would be in the long run and compare.

5. Carry out a simulation study with N = 1000 of the sampling distribution
of �p for n = 5, 10, 20 and for p = .5, .75, .95. In particular, calculate the
empirical distribution functions and plot the histograms. Comment on
your Þndings.

6. Suppose thatX1,X2, . . . are independent realizations from the Bernoulli(p)
distribution; i.e., each Xi takes the value 1 or 0 with probabilities p
and 1 − p, respectively. If the random variable Y counts the number
of tosses until we obtain the Þrst head in a sequence of independent tosses
X1,X2,X3, . . . , then Y has a Geometric(p) distribution. The probability
function for this distribution is given by

P (Y = y) = (1− p)y−1 p
for y = 1, 2, . . . . Plot the probability function for the Geometric(.5) dis-
tribution for the values y = 1, . . . , 10. Do the same for the Geometric(.1)
distribution. What do you notice?

7. Using methods for summing geometric sums, the cumulative distribution
function of the Geometric(p) distribution (see Exercise II.5.6) is given by
P (Y ≤ y) = 1−(1− p)y. Plot the cumulative distribution function for the
Geometric(.5) and Geometric(.1) distribution for the values y = 1, . . . , 10.
What do you notice?

8. To randomly generate from the Geometric(p) distribution (see Exercise
II.5.6), we can repeatedly generate from a Bernoulli(p) and count how
many times we did this until the Þrst 1 appeared. Using Minitab generate
a sample of 1000 from the Geometric(.5) distribution. Plot the sample in
a proportion histogram.

9. Carry out a simulation study, with N = 2000, of the sampling distribution
of the sample standard deviation when sampling from the N(0, 1) distri-
bution, based on a sample of size n = 5. In particular, plot the histogram
using cutpoints 0, 1.5, 2.0 2.5, 3.0 5.0. Repeat this for the sample coeffi-
cient of variation (sample standard deviation divided by the sample mean)
using the cutpoints −10, −9, ..., 0, ..., 9, 10. Comment on the shapes of
the histograms relative to a N(0, 1) density curve.
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10. Generate N = 1000 samples of size n = 5 from the N(0, 1) distribution.
Record a histogram for x̄ using the cutpoints −3,−2.5,−2, ..., 2.5, 3.0.
Generate a sample of size N = 1000 from the N(0, 1/

√
5) distribution.

Plot the histogram using the same cutpoints and compare the histograms.
What will happen to these histograms as we increase N?

11. Generate N = 1000 values of X1,X2, where X1 follows a N(3, 2) distri-
bution and X2 follows a N(−1, 3) distribution. Compute Y = X1 − 2X2
for each of these pairs and plot a histogram for Y using the cutpoints
−20,−15, ..., 25, 30. Generate a sample of N = 1000 from the appropriate
distribution of Y and plot a histogram using the same cutpoints.

12. Plot the density curve for the Exponential(3) distribution (see Exercise
II.4.7) between 0 and 15 with an increment of .1. Generate N = 1000
samples of size n = 2 from the Exponential(3) distribution and record the
sample means. Standardize the sample of x̄ using µ = 3 and σ = 3. Plot
a histogram of the standardized values using the cutpoints −5, −4, ..., 4,
5. Repeat this for n = 5, 10. Comment on the shapes of these histograms.

13. Plot the density of the uniform distribution on (0,1). Generate N = 1000
samples of size n = 2 from this distribution. Standardize the sample of x̄
using µ = .5 and σ =

p
1/12. Plot a histogram of the standardized values

using the cutpoints −5,−4, ..., 4, 5. Repeat this for n = 5, 10. Comment
on the shapes of these histograms.

14. The Weibull(β) has density curve given by βxβ−1e−x
β

for x > 0, where
β > 0 is a Þxed constant. Plot the Weibull(2) density in the range 0 to
10 with an increment of .1 using the C

¯
alc I Probability

¯
Distributions I

W
¯
eibull, command. Generate a sample of N = 1000 from this distrib-

ution using the subcommand C
¯
alc I R

¯
andom Data I W

¯
eibull where β

is the Shape parameter and the Scale parameter is 1. Plot a probability
histogram and compare with the density curve.
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Introduction to Inference

New Minitab commands discussed in this chapter
S
¯
tat I B

¯
asic Statistics I 1-Sample Z

¯P
¯
ower and Sample Size I 1-Sample Z

¯

In this chapter, the basic tools of statistical inference are discussed. There
are a number of Minitab commands that aid in the computation of conÞdence
intervals and for carrying out tests of signiÞcance.

6.1 z ConÞdence Intervals

The command S
¯
tat I B

¯
asic Statistics I 1-Sample Z

¯
computes conÞdence inter-

vals of the form x̄± z(1+γ)/2σ0/
√
n, where γ is prescribed (often γ = 0.95), σ0

is known, x̄ and n are obtained from the data, and zα is the α-th percentile of
the N(0, 1) distribution.
Consider the sample given by (0.8403, 0.8363, 0.8447) , which are stored in

C1, and suppose that it makes sense to take σ0 = .0068. The command S
¯
tat

I B
¯
asic Statistics I 1-Sample Z

¯
with the dialog boxes as in Displays 6.1.1 and

6.1.2 produces the output

Variable N Mean StDev SE Mean
C1 3 0.84043 0.00420 0.00393

99.% CI
(0.83032, 0.85055)

in the Session window. This speciÞes (0.83032, 0.85055) as a 99% conÞdence
interval for µ. Note that in the dialog box of Display 6.1.1, we specify where the
data resides in the Samples in Columns box, the value of σ0 in the Standard
deviation box, and clicked on the Options button to bring up the dialog box in
Display 6.1.2. In this dialog box we have speciÞed the 99% conÞdence level in
the ConÞdence level box.

101
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Display 6.1.1: First dialog box for producing the z conÞdence interval for µ.

Display 6.1.2: Second dialog box for producing the z conÞdence interval. Here we
specify the conÞdence level.

The corresponding session command zinterval is
zinterval V1 sigma = V2 E1 . . .Em

where V1 is the conÞdence level and is any value between 1 and 99.99, V2 is
the assumed value of σ, and E1, ..., Em are columns of data. A V1% conÞdence
interval is produced for each column speciÞed. If no value is speciÞed for V1,
the default value is 95%.

6.2 z Tests

The S
¯
tat I B

¯
asic Statistics I 1-Sample Z

¯
command is used when we want to as-

sess hypotheses about the unknown mean µ. Suppose the sample (2.0, 0.4, 0.7, 2.0,
−0.4, 2.2,−1.3, 1.2, 1.1, 2.3) is stored in C1, and we are asked to assess the null
hypothesis H0 : µ = 0 and we know that σ0 = 1. The S¯

tat I B
¯
asic Statistics I

1-Sample Z
¯
command�together with the dialog box of Display 6.2.1, where we

speciÞed where the data is located, the value of σ0, and that we want to test
H0 : µ = 0 by placing 0 in the Test mean box�produces the following output:
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Variable N Mean StDev SE Mean 99% CI
C1 10 1.020 1.196 0.316 (0.205, 1.835)
Z P

3.23 0.001

This gives the value of z = 3.23 for the z statistic and the P-value equal to
0.001. This is strong evidence against H0 : µ = 0.

Display 6.2.1: Dialog box for assessing the hypothesis H0 : µ = 0 using a z test.

Sometimes it is preferred to assess a one-sided hypothesis such as H0 : µ ≤
µ0. In this case, the relevant P-value is P (Z > (x̄ − µ0)/(σ0/√n)) = 1 −
Φ ((x̄− µ0)/(σ0/√n)) . Minitab also has the facility for assessing hypotheses
such as H0 : µ ≤ µ0 or H0 : µ ≥ µ0.
Suppose, for the above sample, we are asked to assess the null hypothesis

H0 : µ ≤ 0 and we know σ = 1. The S
¯
tat I B

¯
asic Statistics I 1-Sample

Z
¯
command, together with the dialog boxes of Displays 6.2.1 and 6.2.2 (the

greater than refers to the values for which the null hypothesis is false), produces
the output

Variable N Mean StDev SE Mean
C1 10 1.020 1.196 0.316
99.0% Lower Bound Z P

0.284 3.23 0.001

in the Session window. This speciÞes the P-value for this test as .001, so we
have evidence against the null hypothesis. We obtained the dialog box in Display
6.2.2 by clicking on the Options button Display 6.2.1. Here we speciÞed that
we want to test the null hypothesis H0 : µ ≤ 0 by selecting �greater than� in
the Alternative box. The other choices are �not equal,� which selects the null
hypothesis H0 : µ = 0 (the default), and �less than,� which selects the null
hypothesis H0 : µ ≥ 0.
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Display 6.2.2: Dialog box for specifying the kind of test when using a z test.

Note that the P-values for assessing H0 : µ = 0 and H0 : µ ≤ 0 are both
given as 0.001 in the Minitab output, but these have been rounded from the
actual values 0.000619 and 0.001238, respectively. In fact, the P-value for the
one-sided test is always bigger than the P-value for the two-sided test.
The general syntax of the corresponding session command ztest is
ztest V1 sigma = V2 E1 . . .Em

where V1 is the hypothesized value to be tested, V2 is the assumed value of σ,
and E1, ..., Em are columns of data. If no value is speciÞed for V1, the default is
0. A P-value for the hypothesis is computed for each column. If no alternative
subcommand is speciÞed, the P-value for H0 : µ = V1 is computed. If the
subcommand

SUBC> alternative 1.

is used, the P-value for H0 : µ ≤ V1 is computed. If the subcommand
SUBC> alternative -1.

is used, the P-value for H0 : µ ≥ V1 is computed.

6.3 Simulations for ConÞdence Intervals

When we are sampling from a N(µ, σ) distribution and know the value of σ,
the conÞdence intervals constructed in Section 6.1 are exact; i.e., in repeated
sampling, the long-run proportion of the 95% conÞdence intervals constructed
for an unknown mean µ that will contain the true value of this quantity, is equal
to 95%. Of course, any given conÞdence interval may or may not contain the
true value of µ, and, in any Þnite number of such intervals so constructed, some
proportion other than 95% will contain the true value of µ. As the number of
intervals increases, however, the proportion covering will go to 95%.
We illustrate this via a simulation study based on computing 90% conÞdence

intervals. The session commands



Introduction to Inference 105

MTB > random 100 c1-c5;
SUBC> normal 1 2.
MTB > rmean c1-c5 c6
MTB > invcdf .95;
SUBC> normal 0 1.
Normal with mean = 0 and standard deviation = 1.00000
P( X <= x) x
0.9500 1.6449
MTB > let k1=1.6449*2/sqrt(5)
MTB > let c7=c6-k1
MTB > let c8=c6+k1
MTB > let c9=c7<1 and c8>1
MTB > mean c9
Mean of C9 = 0.91000
MTB > set c10
DATA> 1:25
DATA> end
MTB > delete 26:100 c7 c8

generate 100 random samples of size 5 from the N(1, 2) distribution, place the
means in C6, the lower end-point of a 90% conÞdence interval in C7, and the
upper end-point in C8, and record whether or not a conÞdence interval covers
the true value µ = 1 by placing a 1 or 0 in C9, respectively. The mean of C9
is the proportion of intervals that cover, and this is 91%, which is 1% too high.
Finally, we plotted the Þrst 25 of these intervals in a plot shown in Display 6.3.1
(note we use the features available in Minitab for producing multiple scatterplots
on the same plot to produce this plot). Drawing a solid horizontal line at 1 on
the y-axis indicates that most of these intervals do indeed cover the true value
µ = 1 (the 2nd, 4th, 15th, and 21st intervals do not contain 1).

Display 6.3.1: Plot of 90% conÞdence intervals for the mean when sampling from the
N(1, 2) distribution with n = 5. The lower end-point is denoted by ◦ and the upper
end-point is denoted by �.



106 Chapter 6

The simulation just carried out simply veriÞes a theoretical fact. On the
other hand, when we are computing approximate conÞdence intervals�i.e., we
are not sampling necessarily from a normal distribution�it is good to do some
simulations from various distributions to see how much reliance we can place
in the approximation at a given sample size. The true coverage probability of
the interval, i.e., the long-run proportion of times that the interval covers the
true mean, will not in general be equal to the nominal conÞdence level. Small
deviations are not serious, but large ones are.

6.4 Power Calculations
It is also useful to know in a given context how sensitive a particular test of sig-
niÞcance is. By this, we mean how likely it is that the test will lead us to reject
the null hypothesis when the null hypothesis is false. This is measured by the
concept of the power of a test. Typically, a level α is chosen for the P-value at
which we would deÞnitely reject the null hypothesis if the P-value is smaller than
α. For example, α = .05 is a common choice for this level. Suppose that we have
chosen the level of .05 for the two-sided z test and we want to evaluate the power
of the test when the true value of the mean is µ = µ1, i.e., evaluate the probabil-
ity of getting a P-value smaller than .05 when the mean is µ1. The two-sided z
test with level α rejects H0 : µ = µ0 whenever 2(1−Φ (|(x̄− µ0)/(σ/

√
n)|)) ≤ α

or, equivalently, whenever |(x̄− µ0)/(σ/√n)| ≥ Φ−1 (1− α/2) = z1−α/2. For
example, if α = .05, then 1−α/2 = .975 and the quantile z.975 can be obtained
using the command C

¯
alc I Probability D

¯
istributions I N

¯
ormal and the inverse

distribution function, which gives the output

Normal with mean = 0 and standard deviation = 1.00000
P( X <= x) x

0.975 1.95996

in the Session window; i.e., the .975 percentile of the N(0, 1) distribution is
1.95996.
If µ = µ1, then (x̄ − µ0)/(σ/√n) is a realized value from the distribution

of Y = (X̄ − µ0)/(σ/√n) when X̄ ∼ N(µ1, σ/
√
n). Therefore, Y follows a

N((µ1−µ0)/(σ/√n), 1) distribution. The power of the two-sided test at µ = µ1
is then P (|Y | > z1−α/2), and this can be evaluated exactly using the command
C
¯
alc I Probability D

¯
istributions I N

¯
ormal and the distribution function, after

writing

P
¡|Y | > z1−α/2¢ = P (Y > z1−α/2) + P (Y < −z1−α/2)
= P

µ
Z > −(µ1 − µ0)

σ/
√
n

+ z1−α/2

¶
+ P

µ
Z < −(µ1 − µ0)

σ/
√
n

− z1−α/2
¶

with Z ∼ N(0, 1).
Alternatively, exact power calculations can be carried out under the assump-

tion of sampling from a normal distribution using the S
¯
tat I P

¯
ower and Sample

Size I 1-Sample Z
¯
command and Þlling in the dialog box appropriately. Also,
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the minimum sample size required to guarantee a given power at a prescribed
difference |µ1 − µ0| can be obtained using this command. For example, Þlling
in the dialog box for this command as in Display 6.4.1 creates the output

Testing mean = null (versus not = null)
Calculating power for mean = null + difference
Alpha = 0.05 Sigma = 1.3
Sample
Difference Size Power
0.1 10 0.0568057
0.2 10 0.0775267

in the Session window and also produces a graph of the power curve. This gives
the power for testing H0 : µ = µ0 versus H0 : µ 6= µ0 at |µ1 − µ0| = .1 and
|µ1 − µ0| = .2 when n = 10, σ = 1.3, and α = .05. These powers are given by
0.0568057 and 0.0775267, respectively. Clicking on the Op

¯
tions button allows

you to choose other alternatives and specify other values of α in the SigniÞcance
level box.

Display 6.4.1: Dialog box for calculating powers and minimum sample sizes.

If we had instead Þlled in Power values at .1 and .2 in the dialog box of
Display 6.4.1, say as .8 and .9, and had left the Sample sizes box empty, we
would have obtained the output

Testing mean = null (versus not = null)
Calculating power for mean = null + difference
Alpha = 0.05 Sigma = 1.3
Sample Target Actual
Difference Size Power Power

0.1 1327 0.8000 0.800160
0.1 1776 0.9000 0.900039
0.2 332 0.8000 0.800456
0.2 444 0.9000 0.900039

in the Session window and also a plot of the power curves for each of the different
sample sizes. This prescribes the minimum sample sizes n = 1327 and n = 1776
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to obtain the powers .8 and .9, respectively, at the difference .1 and the sample
sizes n = 332 and n = 444 to obtain the powers .8 and .9, respectively, at the
difference .2.
This derivation of the power of the two-sided test depended on the sample

coming from a normal distribution, as this leads to X̄ having an exact normal
distribution. In general, however, X̄ will be only approximately normal, so the
normal calculation for the power is not exact. To assess the effect of the nonnor-
mality, however, we can often simulate sampling from a variety of distributions
and estimate the probability P (|Y | > z1−α/2). For example, suppose that we
want to test H0 : µ = 0 in a two-sided z test based on a sample of 10, where
we estimate σ by the sample standard deviation and we want to evaluate the
power at 1. Let us further suppose that we are actually sampling from a uni-
form distribution on the interval (−10, 12), which indeed has its mean at 1. The
simulation given by the session commands

MTB > random 1000 c1-c10;
SUBC> uniform -10 12.
MTB > rmean c1-c10 c11
MTB > rstdev c1-c10 c12
MTB > let c13=absolute(c11/(c12/sqrt(10)))
MTB > let c14=c13>1.96
MTB > let k1=mean(c14)
MTB > let k2=sqrt(k1*(1-k1)/n(c14))
MTB > print k1 k2
K1 0.112000
K2 0.00997276

estimates the power to be .112, and the standard error of this estimate, as
given in K2, is approximately .01. The application determines whether or not
the assumption of a uniform distribution makes sense and whether or not this
power is indicative of a sensitive test or not.

6.5 The Chi-Square Distribution

If Z is distributed according to the N(0, 1) distribution, then Y = Z2 is dis-
tributed according to the Chi-square(1) distribution. If X1 is distributed Chi-
square(k1) independent of X2 distributed Chi-square(k2), then Y = X1+X2 is
distributed according to the Chi-square(k1+k2) distribution. There are Minitab
commands that assist in carrying out computations for the Chi-square(k) dis-
tribution. Note that k is any positive value and is referred to as the degrees of
freedom.
The values of the density curve for the Chi-square(k) distribution can be

obtained using the C
¯
alc I Probability

¯
Distributions I C

¯
hi-Square command,

with k as the D
¯
egrees of freedom in the dialog box, or the session command pdf

with the subcommand chisquare. For example, the command
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MTB > pdf c1 c2;
SUBC> chisquare 4.

calculates the value of the Chi-square(4) density curve at each value in C1 and
stores these values in C2. This is useful for plotting the density curve. The C

¯
alc

I Probability D
¯
istributions I C

¯
hi-Square command, or the session commands

cdf and invcdf, can also be used to obtain values of the Chi-square(k) cumu-
lative distribution function and inverse distribution function, respectively. We
use the C

¯
alc I R

¯
andom Data I C

¯
hi-Square command, or the session command

random, to obtain random samples from these distributions.
We will later see applications of the chi-square distribution but we mention

one here. In particular, if x1, . . . , xn is a sample from a N(µ, σ) distribution,
then (n− 1) s2/σ2 =Pn

i=1 (xi − x̄)2 /σ2 is known to follow a Chi-square(n− 1)
distribution, and this fact is used as a basis for inference about σ (conÞdence
intervals and tests of signiÞcance). Because of the nonrobustness of these infer-
ences to small deviations from normality, these inferences are not recommended.

6.6 Exercises

If your version of Minitab places restrictions such that the value of the simula-
tion sample size N requested in these problems is not feasible, then substitute a
more appropriate value. Be aware, however, that the accuracy of your results is
dependent on how large N is.

1. Suppose we obtain the following sample from a N(µ, 2.3) distribution.

−1.3 −2.5 −2.5 −0.9 1.8 −2.9 −3.0 1.7 −0.1 −4.8

Use the S
¯
tat I B

¯
asic Statistics I 1- Sample Z

¯
command to compute 90%,

95%, and 99% conÞdence intervals for µ.

2. For the data in Exercise II.6.1, use the S
¯
tat I B

¯
asic Statistics I 1- Sample

Z
¯
command to test the null hypothesis H0 : µ = 0 in a two-sided test.

Evaluate the power of the test with level α = .05 at µ = 1. Repeat these
calculations but this time test the null hypothesis H0 : µ ≤ 0.

3. Simulate N = 1000 samples of size 5 from the N(1, 2) distribution, and
calculate the proportion of .90 z conÞdence intervals for the mean that
cover the true value µ = 1.

4. Simulate N = 1000 samples of size 10 from the uniform distribution on
(0,1), and calculate the proportion of .90 z conÞdence intervals for the
mean that cover the true value µ = .5. Use σ = 1/

√
12.

5. Simulate N = 1000 samples of size 10 from the Exponential(1) distribu-
tion (see Exercise II.4.7), and calculate the proportion of .95 z conÞdence
intervals for the mean that cover the true value µ = 1. Use σ = 1.
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6. The density curve for the Student(1) distribution takes the form

1

π

1

1 + x2

for −∞ < x <∞. This special case is called the Cauchy distribution. Plot
this density curve in the range (−20, 20) using an increment of .1. Simulate
N = 1000 samples of size 5 from the Student(1) distribution (see Exercise
II.4.12), and calculate the proportion of .90 conÞdence intervals for the
mean, using the sample standard deviation for σ, that cover the value
µ = 0. It is possible to obtain very bad approximations in this example
because the central limit theorem does not apply to this distribution. In
fact, it does not have a mean.

7. Suppose we are testing H0 : µ = 3 versusH0 : µ 6= 3 when we are sampling
from a N (µ, σ) distribution with σ = 2.1 and the sample size is n = 20.
If we use the critical value α = .01, determine the power of this test at
µ = 4.

8. Suppose we are testing H0 : µ = 3 versus H0 : µ > 3 when we are
sampling from a N (µ, σ) distribution with σ = 2.1. If we use the critical
value α = .01, determine the minimum sample size so that the power of
this test at µ = 4 is .99.

9. The uniform distribution on the interval (a, b) has mean µ = (a+ b) /2 and
standard deviation σ = ((b− a)2 /12)1/2. Calculate the power at µ = 1
of the two-sided z test at level α = .95 for testing H0 : µ = 0 when the
sample size is n = 10, σ is the standard deviation of a uniform distribution
on (−10, 12), and we are sampling from a normal distribution.

10. Suppose that we are testing H0 : µ = 0 in a two-sided test based on
a sample of 3. Approximate the power of the z test at level α = .1 at
µ = 5 when we are sampling from the distribution of Y = 5 +W, where
W follows a Student(6) distribution (see Exercise II.4.12) and we use the
sample standard deviation to estimate σ. Note that the mean of the
distribution of Y is 5.
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Inference for Distributions

New Minitab commands discussed in this chapter
C
¯
alc I Probability D

¯
istributions I F

¯C
¯
alc I Probability D

¯
istributions I t

¯C
¯
alc I R

¯
andom Data I F

¯C
¯
alc I R

¯
andom Data I t

¯P
¯
ower and Sample Size I 1

¯
-Sample t

P
¯
ower and Sample Size I 2

¯
-Sample t

S
¯
tat I B

¯
asic Statistics I 1

¯
-Sample t

S
¯
tat I B

¯
asic Statistics I 2

¯
-Sample t

S
¯
tat I N

¯
onparametrics I 1

¯
-Sample Sign

7.1 The Student Distribution

If Z is distributed N(0, 1) independent of X distributed Chi-square(k) (see
II.6.5), then T = Z/

p
X/k is distributed according to the Student(k) distri-

bution. The value k is referred to as the degrees of freedom of the Student
distribution. There are Minitab commands that assist in carrying out compu-
tations for this distribution.
The values of the density curve, distribution function, and inverse distrib-

ution function for the Student(k) distribution can be obtained using the C
¯
alc

I Probability D
¯
istributions I t

¯
command with k as the D

¯
egrees of freedom.

Alternatively, we can use the session commands pdf, cdf, and invcdf with the
student subcommand. For example, the command

MTB > pdf c1 c2;
SUBC> student 4.

calculates the value of the Student(4) density curve at each value in C1 and
stores these values in C2. This is useful for plotting the density curve. To

111
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generate from this distribution we use the command C
¯
alc I R

¯
andom Data I t

¯again with k as the Degrees of freedom or use the session command random
with the student subcommand.

7.2 t ConÞdence Intervals

When sampling from the N(µ, σ) distribution with µ and σ unknown, an exact
1 − α conÞdence interval for µ based on the sample x1, . . . , xn is given by x̄ ±
t∗s/

√
n, where t∗ is the 1 − α/2 percentile of the Student(n − 1) distribution.

These intervals can be obtained using the S
¯
tat I B

¯
asic Statistics I 1

¯
- Sample

t command.
For example, suppose that we have the following sample of n = 10 in C1.

0.44 4.19 0.22 4.23 1.46
3.98 2.29 1.79 6.09 3.04

Then the S
¯
tat I B

¯
asic Statistics I 1

¯
- Sample t command, with the dialog box

as in Display 7.2.1, produces the output

Variable N Mean StDev SE Mean 95% CI
C1 10 2.773 1.872 0.592 (1.434, 4.112)

in the Session window. This computes a 95% conÞdence interval for µ as
(1.43372, 4.11228). To change the conÞdence level, click on the Options but-
ton and Þll in the subsequent dialog box appropriately.

Display 7.2.1: Dialog box for producing t conÞdence intervals.

The general syntax of the corresponding session command tinterval is

tinterval V E1 . . .Em
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where V is the conÞdence level and is any value between 1 and 99.99 and E1, ...,
Em are columns of data. A V% conÞdence interval is produced for each column
speciÞed. If no value is speciÞed for V, the default value is 95%.

7.3 t Tests

The S
¯
tat I B

¯
asic Statistics I 1

¯
-Sample t command is used when we have

a sample x1, . . . , xn from a normal distribution with unknown mean µ and
standard deviation σ and we want to test the hypothesis that the unknown
mean equals a value µ0. The test is based on computing a P -value using the
observed value of

t =
x̄− µ0
s/
√
n

and the Student(n− 1) distribution.
For example, suppose we want to test H0 : µ = 3 for the data presented in

Section 7.2. Then the S
¯
tat I B

¯
asic Statistics I 1

¯
- Sample t command, with the

dialog box as in Display 7.3.1, produces the output

Test of mu = 3 vs not = 3
Variable N Mean StDev SE Mean
C1 10 2.773 1.872 0.592

95% CI T P
(1.434, 4.112) -0.38 0.710

so we have the P -value as 0.710 and we have no evidence against H0 : µ = 3. To
assess other hypotheses click on the Options button and Þll in the subsequent
dialog box appropriately.

Display 7.3.1: First dialog box for a test of hypothesis using the t statistic.
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The general syntax of the corresponding session command ttest is

ttest V E1 . . .Em

where V is the hypothesized value to be tested and E1, ..., Em are columns of
data. If no value is speciÞed for V, the default is 0. A test of the hypothesis
is carried out for each column. Also, the alternative subcommand is available
and works just as with the ztest command.
Note that the S

¯
tat I B

¯
asic Statistics I 1

¯
-Sample t command can also be

used to carry out t tests for the difference of two means in a matched pairs
design. For this, store the difference of the measurements in a column and
apply S

¯
tat I B

¯
asic Statistics I 1

¯
-Sample t to that column as shown previously.

Exact power calculations can be carried under the assumption of sampling
from a normal distribution using P

¯
ower and Sample Size I 1-Sample t and Þlling

in the dialog box appropriately. Further, the minimum sample size required
to guarantee a given power at a prescribed difference |µ1 − µ0| and standard
deviation σ can be obtained using this command. For example, using this
command with the dialog box as in Display 7.3.2, we obtain the output

Testing mean = null (versus not = null)

Calculating power for mean = null + difference

Alpha = 0.05 Sigma = 3

Sample

Difference Size Power

2 5 0.2113

in the Session window together with a plot of the power curve for this test. This
gives the exact power of the two-sided t test when n = 5, |µ1 − µ0| = 2, σ = 3.0,
and α = .05 as .2113. The Options button can be used to compute power for
one-sided tests.

Display 7.3.2: Dialog box for determining power and minimum sample sizes when
using the one-sample t test.
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7.4 The Sign Test

Sometimes we cannot sensibly assume normality or transform to normality or
don�t have a large sample so that there is a central limit theorem effect. In
such a case, we attempt to use distribution free or nonparametric methods. The
testing method based on the sign test statistic for the median is one of these.
For example, suppose we have the data of Section 7.2 stored in column

C1. Then the S
¯
tat I N

¯
onparametrics I 1

¯
-Sample Sign command produces the

dialog box given in Display 7.4.1. Here we have Þlled in the ConÞdence interval
button, and in the Level box we have requested a .95 conÞdence interval for the
median. The following output is obtained.
Sign confidence interval for median

Confidence
Achieved Interval

N Median Confidence Lower Upper Position
C1 10 2.665 0.8906 1.460 4.190 3

0.9500 1.111 4.204 NLI
0.9785 0.440 4.230 2

As the distribution of the sign statistic is discrete, in general the exact conÞdence
cannot be attained, so Minitab records the conÞdence intervals with conÞdence
level just smaller and just greater than the conÞdence level requested and also
records a middle interval obtained by interpolation.

Display 7.4.1: Dialog box for the sign test and the sign conÞdence interval.

If instead we Þll in the Test median button and enter 4.0 for the null hy-
pothesis with the Alternative not equal, we obtain the output
Sign test of median = 4.000 versus not = 4.000

N Below Equal Above P Median
C1 10 7 0 3 0.3438 2.665

which gives the P -value as 0.3438 for assessing the hypothesis that the median
of the population distribution equals 4.0. Also, the sample median of 2.665 is
recorded.
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Note that the S
¯
tat I N

¯
onparametrics I 1

¯
-Sample Sign command can also

be used to construct conÞdence intervals and carry out tests for the median
of a difference in a matched pairs design. For this, store the difference of the
measurements in a column and apply the command to that column.
The corresponding session commands are sinterval, for the sign conÞdence

interval and stest, for the sign test. The general syntax of the sinterval com-
mand is

sinterval V E1 . . .Em

where V is the conÞdence level, and is any value between 1 and 99.99, and E1,
..., Em are columns of data. A V% conÞdence interval is produced for each
column speciÞed. If no value is speciÞed for V, then the default value is 95%.
The general syntax of the stest command is

stest V E1 . . .Em

where V is the hypothesized value to be tested and E1, ..., Em are columns of
data. If no value is speciÞed for V, the default is 0. A test of the hypothesis
is carried out for each column. The alternative subcommand is also available
for one-sided tests.

7.5 Comparing Two Samples

If we have independent samples x11, . . . x1n1 from theN(µ1, σ1) distribution and
x12, . . . x1n2 from the N(µ2, σ2) distribution, where σ1 and σ2 are known, we can
base inferences about the difference of the means µ1−µ2 on the z statistic given
by

z =
x̄1 − x̄2 − (µ1 − µ2)q

σ21
n1
+

σ22
n2

.

Under these assumptions, z has an N(0, 1) distribution. Therefore, a 1 − α
conÞdence interval for µ1 − µ2 is given by

x̄1 − x̄2 ±
s
σ21
n1
+
σ22
n2
z∗

where z∗ is the 1 − α/2 percentile of the N(0, 1) distribution. We can test
H0 : µ = µ0 against the alternative Ha : µ 6= µ0 by computing the P -value
P (|Z| > |z0|) = 2P (Z > z0), where Z is distributed N(0, 1) and z0 is the
observed value of the z statistic. These inferences are also appropriate without
normality, provided n1 and n2 are large and we have the values σ1 and σ2 or
good estimates. These inferences are easily carried out using Minitab commands
we have already discussed.
In general, however, we will not have available suitable values of σ1 and σ2 or

large samples and will have to use the two-sample analogs of the single-sample
t procedures just discussed. This is acceptable, provided, of course, that we
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have checked for and agreed that it is reasonable to assume that both samples
are from normal distributions. These procedures are based on the two-sample t
statistic given by

t =
x̄1 − x̄2 − (µ1 − µ2)q

s21
n1
+

s22
n2

where we have replaced the population standard deviations by their sample
estimates. The exact distribution of this statistic does not have a convenient
form, but, of course, we can always simulate its distribution. Actually, it is
typical to use an approximation to the distribution of this statistic based on a
Student distribution. Use H

¯
elp to get more details on this.

The S
¯
tatI B

¯
asic StatisticsI 2

¯
-Sample t command is available for computing

inference procedures based on t, using a dialog box as in Display 7.5.1.

Display 7.5.1: Dialog box for two sample problems based on the two-sample t
statistic.

For example, suppose that we have the following values for two samples,

Sample 1 7 −4 18 17 −3 −5 1 10 11 −2
Sample 2 −1 12 −1 −3 3 −5 5 2 −11 −1 −3

with Sample 1 in C1 and Sample 2 in C2. The S
¯
tat I B

¯
asic Statistics I 2

¯
-

Sample t command with the dialog box as in Display 7.5.1 produces the output
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Two-sample T for C1 vs C2
N Mean StDev SE Mean

C1 10 5.00 8.74 2.8
C2 11 -0.27 5.90 1.8
Difference = mu (C1) - mu (C2)
Estimate for difference: 5.27
95% CI for difference: (-1.74, 12.28)
T-Test of difference = 0 (vs not =): T-Value = 1.60
P-Value = 0.130 DF = 15

in the Session window. This gives a 95% conÞdence interval for the difference
in the means µ1 − µ2 as (−1.74, 12.28) and calculates the P -value .130 for the
test of H0 : µ1 − µ2 = 0 versus the alternative Ha : µ1 − µ2 6= 0. In this case,
we do not reject H0.
Notice we have selected the Samples in different columns radio button, as

this is how we have stored our data. Alternatively, we can store all the actual
measurements in a single column with a second column providing an index of
the sample to which the observation belongs. Clicking on the Op

¯
tions button

of the dialog box of Display 7.5.1 produces a dialog box where we can prescribe
a different value for the conÞdence level, the difference between the means that
we wish to test for, and the type of hypothesis.
Notice also that, in the dialog box of Display 7.5.1, we have left the box

Assume equal variances unchecked. This box is checked only when we feel that
we can assume that σ1 = σ2 = σ and want to pool both samples together to es-
timate the common σ. Pooling is usually unnecessary and is not recommended.
Power calculations can be carried out under the assumption of sampling

from a normal distribution using P
¯
ower and Sample Size I 2-Sample t and

Þlling in the dialog box appropriately, although this requires the assumption
of a common population standard deviation σ. Further, the minimum sample
size required to guarantee a given power at a prescribed difference |µ1 − µ2|, and
assuming a common standard deviation σ, can be obtained using this command.
This command works the same as the one sample case.
There are two corresponding session commands�twosample and twot.

Each of these commands computes conÞdence intervals for the difference of the
means and computes P -values for tests of signiÞcance concerning the difference
of means. The only difference between these commands is that with twosample
the two samples are in individual columns, while with twot the samples are in a
single column with subscripts indicating group membership in a second column.
The general syntax of the twosample command is

twosample V E1 E2

where V is the conÞdence level and is any value between 1 and 99.99 and E1,
E2 are columns of data containing the two samples. The general syntax of the
twot command is

twot V E1 E2
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where V is the conÞdence level and is any value between 1 and 99.99 and E1,
E2 are columns of data with E1 containing the samples and E2 containing the
subscripts.
The alternative subcommand is available with both twosample and twot

if we wish to conduct one-sided tests. Also, the subcommand pooled is available
if we feel we can assume that σ1 = σ2 = σ and want to pool both samples
together to estimate the common σ.

7.6 The F Distribution

IfX1 is distributed Chi-square(k1) independent ofX2 distributed Chi-square(k2),
then

F =
X1/k1
X2/k2

is distributed according to the F (k1, k2) distribution. The value k1 is called
the numerator degrees of freedom and the value k2 is called the denominator
degrees of freedom. There are Minitab commands that assist in carrying out
computations for this distribution.
The values of the density curve for the F (k1, k2) distribution can be obtained

using the C
¯
alc I Probability D

¯
istributions I F

¯
command, with k1 speciÞed as

the Numerator degrees of freedom and k2 speciÞed as the Denominator degrees
of freedom in the dialog box. For example, this command with the dialog box
as in Display 7.6.1 produces the output

x P( X <= x )
5.0000 0.828826

in the Session window. This calculates the value of the F (3, 2) distribution
function at 5 as .8288. Alternatively, you can use the session commands pdf,
cdf, and invcdf with the F subcommand. The C

¯
alc I R

¯
andom Data I F

¯command and the session command random with the F subcommand can be
used to obtain random samples from the F (k1, k2) distribution.
There are a number of applications of the F -distribution. In particular,

if x11, . . . x1n1 is a sample from the N(µ1, σ1) distribution and x12, . . . x1n2 a
sample from the N(µ2, σ2) distribution, then

F =
s21/σ

2
1

s22/σ
2
2

is known to follow an F (n1 − 1, n2 − 1) distribution. This fact is used as a
basis for inference about the ratio σ1/σ2, i.e., conÞdence intervals and tests
of signiÞcance and, in particular, testing for equality of variances between the
samples. Because of the nonrobustness of these inferences to small deviations
from normality, these inferences are not usually recommended.



120 Chapter 7

Display 7.6.1: Dialog box for probability calculations for the F (k1, k2) distribution.

7.7 Exercises

If your version of Minitab places restrictions such that the value of the simula-
tion sample size N requested in these problems is not feasible, then substitute a
more appropriate value. Be aware, however, that the accuracy of your results is
dependent on how large N is.

1. Plot the Student(k) density curve for k = 1, 2, 10, 30 and the N(0, 1) den-
sity curve on the interval (−10, 10) using an increment of .1 and compare
the plots.

2. Make a table of the values of the cumulative distribution function of the
Student(k) distribution for k = 1, 2, 10, 30 and the N(0, 1) distribution at
the points −10,−5,−3,−1, 0, 1, 3, 5, 10. Comment on the values.

3. Make a table of the values of the inverse cumulative distribution function of
the Student(k) distribution for k = 1, 2, 10, 30 and the N(0, 1) distribution
at the points .0001, .001, .01, .1, .25, .5. Comment on the values.

4. Simulate N = 1000 values from Z distributed N(0, 1) and X distributed
Chi-square(3) and plot a histogram of T = Z/

p
X/3 using the cutpoints

−10,−9, . . . , 9, 10. Generate a sample of N = 1000 values directly from
the Student(3) distribution, plot a histogram with the same cutpoints,
and compare the two histograms.

5. Carry out a simulation with N = 1000 to verify that the 95% conÞdence
interval based on the t statistic covers the true value of the mean 95% of
the time when taking samples of size 5 from the N(4, 2) distribution.

6. Generate a sample of 50 from the N(10, 2) distribution. Compare the 95%
conÞdence intervals obtained via the S

¯
tat I B

¯
asic Statistics I 1

¯
-Sample
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t and S
¯
tat I B

¯
asic Statistics I 1- Sample Z

¯
commands using the sample

standard deviation as an estimate of σ.

7. Calculate the power of the t test at µ1 = 1, σ1 = 2 for testing H0 : µ = 0
versus the alternative Ha : µ 6= 0 at level α = .05, based on a sample of 5
from the normal distribution.

8. Simulate the power of the two sample t test at µ1 = 1, σ1 = 2, µ2 = 2, σ1 =
3 for testing H0 : µ1 − µ2 = 0 versus the alternative Ha : µ1 − µ2 6= 0 at
level α = .05, based on a sample of 5 from the N(µ1, σ1) distribution and
a sample of size 8 from the N(µ2, σ2) distribution. Use the conservative
rule when choosing the degrees of freedom for the approximate test, i.e.,
the smaller of n1 − 1 and n2 − 1.

9. If Z is distributed N(µ, 1) andX is distributed Chi-square(k) independent
of Z, then

Y =
Zp
X/k

is distributed according to a noncentral Student(k) distribution with non-
centrality µ. Simulate samples of N = 1000 from this distribution with
k = 5 and µ = 0, 1, 5, 10. Plot the samples in histograms with cutpoints
−20,−19, . . . , 19, 20 and compare these plots.

10. If X1 is distributed Chi-square(k1) independently of X2, which is distrib-
uted N(δ, 1), then the random variable Y = X1 + X

2
2 is distributed ac-

cording to a noncentral Chi-square(k+1) distribution with noncentrality
λ = δ2. Generate samples of n = 1000 from this distribution with k = 2
and λ = 0, 1, 5, 10. Plot histograms of these samples with the cut-points
0,1, ..., 200. Comment on the appearance of these histograms.

11. If X1 is distributed noncentral Chi-square(k1) with non-centrality λ in-
dependently of X2, which is distributed Chi-square(k2), then the random
variable

Y =
X1/k1
X2/k2

is distributed according to a noncentral F (k1, k2) distribution with non-
centrality λ. Generate samples of n = 1000 from this distribution with
k1 = 2, k2 = 3, and λ = 0, 1, 5, 10. Plot histograms of these samples
with the cut-points 0,1, ..., 200. Comment on the appearance of these
histograms.
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Inference for Proportions

New Minitab commands discussed in this chapter
P
¯
ower and Sample Size I 1 P

¯
roportion

P
¯
ower and Sample Size I 2 Pr

¯
oportions

S
¯
tat I B

¯
asic Statistics I 1 Pr

¯
oportion

S
¯
tat I B

¯
asic Statistics I 2 Pr

¯
oportions

This chapter is concerned with inference methods for a proportion p and for
the comparison of two proportions p1 and p2. Proportions arise from measuring
a binary-valued categorical variable on population elements, such as gender in
human populations. For example, p might be the proportion of females in a
given population, or we might want to compare the proportion p1 of females in
population 1 with the proportion p2 of females in population 2. The need for
inference arises as we base our conclusions about the values of these proportions
on samples from the populations rather than measuring every element in the
population. For convenience, we will denote the values assumed by the binary
categorical variables as 1 and 0, where 1 indicates the presence of a characteristic
and 0 indicates its absence.

8.1 Inference for a Single Proportion

Suppose that x1, . . . , xn is a sample from a population where the variable is
measuring the presence or absence of some trait by a 1 or 0, respectively. Let �p
be the proportion of 1�s in the sample. This is the estimate of the true proportion
p. For example, the sample could arise from coin tossing, where 1 denotes heads
and 0 tails and �p is the proportion of heads, while p is the probability of heads. If
the population we are sampling from is Þnite, then, strictly speaking, the sample
elements are not independent. But if the population size is large relative to the
sample size n, then independence is a reasonable approximation, and this is

123
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necessary for the methods of this chapter. So we will consider x1, . . . , xn as a
sample from the Bernoulli(p) distribution.
The standard error of the estimate �p is

p
�p(1− �p)/n, and because �p is an

average, the central limit theorem gives that

z =
�p− pq
�p(1−�p)
n

is approximately N(0, 1) for large n. This leads to the approximate 1− α con-
Þdence interval given by �p±p�p(1− �p)/nz∗, where z∗ is the 1−α/2 percentile
of the N(0, 1) distribution. To test a null hypothesis H0 : p = p0, we make use
of the fact that under the null hypothesis the statistic

z =
�p− p0q
p0(1−p0)

n

is approximately N(0, 1). To test H0 : p = p0 versus Ha : p 6= p0, we compute
P (|Z| > |z|) = 2P (Z > |z|), where Z is distributed N(0, 1).
For example, suppose that a coin was tossed n = 4040 times and the ob-

served proportion of heads is x̄ = 2048/4040 = .5069. Then we have thatp
.5069(1− .5069) = 0.49995 and, using S

¯
tat I B

¯
asic Statistics I 1-Sample

Z
¯
and the dialog box in Display 8.1.1, we obtain the output

N Mean SE Mean 95% CI
4040 0.50690 0.00787 (0.49148, 0.52232)

which provides an approximate .95-conÞdence interval for p.

Display 8.1.1: Dialog box for obtaining conÞdence intervals.
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Similarly, if we want to assess the hypothesis H0 : p = .5, then
p
.5(1− .5) =

0.5 and S
¯
tat I B

¯
asic Statistics I 1-Sample Z

¯
and the dialog box in Display 8.1.2

leads to

Test of mu = 0.5 vs not = 0.5
The assumed standard deviation = 0.5
N Mean SE Mean 95% CI Z P

4040 0.50690 0.00787 (0.49148, 0.52232) 0.88 0.380

which gives the P -value as 0.380 and so we have no evidence against H0 : p = .5.
If we wish to use other conÞdence levels or test other hypotheses, then these
options are available using the Options button in the dialog box.

Display 8.1.2: Dialog box for obtaining P -values.

Note that the estimate and conÞdence intervals recorded by the software
are not those based on the Wilson estimate. To obtain the Wilson estimate
and the associated conÞdence interval, we must add four data values to the
data set�two heads (or successes) and two tails (or failures). So in this case,
implementing the above command with the number of trials equal to 4044 and
the number of successes equal to 2050 will produce the inferences based on the
Wilson estimate.
Power calculations and minimum sample sizes to achieve a prescribed power

can be obtained using P
¯
ower and Sample Size I 1 P

¯
roportion. For example,

suppose we want to compute the power of the test for H0 : p = .5 versus
Ha : p 6= .5 at level α = .05 at n = 10, p = .4. This command, with the dialog
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box as in Display 8.1.3,

Display 8.1.3: Dialog box for power calculations for test of a single proportion.

produces the output

Testing proportion = 0.5 (versus not = 0.5)
Alpha = 0.05

Alternative Sample
Proportion Size Power
0.4 10 0.0918014

which calculates this power as .0918014. So the test is not very powerful. By
contrast, at n = 100, p = .4 the power is .51633.

8.2 Inference for Two Proportions

Suppose that x11, . . . , xn11 is a sample from population 1 and x12, . . . , xn22 is
a sample from population 2, where the variable is measuring the presence or
absence of some trait by a 1 or 0, respectively. We assume then that we have
a sample of n1 from the Bernoulli(p1) distribution and a sample of n2 from the
Bernoulli(p2) distribution. Suppose that we want to make inferences about the
difference in the proportions p1 − p2. Let �pi be the proportion of 1�s in the ith
sample.
The central limit theorem gives that

z =
�p1 − �p2 − (p1 − p2)q
�p1(1−�p1)

n1
+ �p2(1−�p2)

n2

is approximately N(0, 1) for large n1 and n2. This leads to the approximate
1− α conÞdence interval given by

�p1 − �p2 ±
s
�p1(1− �p1)

n1
+
�p2(1− �p2)

n2
z∗
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where z∗ is the 1 − α/2 percentile of the N(0, 1) distribution. The Wilson
estimate and its corresponding conÞdence interval are obtained by adding four
data values to the data set�one success and one failure to each sample�so
that the ith sample size becomes ni + 2 and the ith sample estimate becomes
(ni�pi + 1) / (ni + 2). The above formula for the conÞdence interval applied with
these changes then gives the interval based on the Wilson estimates.

To test a null hypothesis H0 : p1 = p2 we use the fact that under the null
hypothesis the statistic

z =
�p1 − �p2r

�p(1− �p)
³
1
n1
+ 1

n2

´
is approximately N(0, 1) for large n1 and n2, where

�p =
n1�p1 + n2�p2
n1 + n2

is the estimate of the common value of the proportion when the null hypothesis
is true. To test H0 : p1 = p2 versus Ha : p1 6= p2 we compute P (|Z| > |z|) =
2P (Z > |z|) where Z is distributed N(0, 1).
For example, suppose that we want to test H0 : p1 = p2 versus Ha : p1 6= p2

when n1 = 61, �p1 = .803 = 49/61, n2 = 62, �p2 = .613 = 38/62. The command
S
¯
tat I B

¯
asic Statistics I 2 P

¯
roportions with the dialog box as in Display 8.2.1

produces the output

Sample X N Sample p

1 49 61 0.803279

2 38 62 0.612903

Difference = p (1) - p (2)

Estimate for difference: 0.190375

95% CI for difference: (0.0333680, 0.347383)

Test for difference = 0 (vs not = 0): Z = 2.38 P-Value = 0.017

in the Session window. The P -value is .017, so we would deÞnitely reject. A 95%
conÞdence interval for p1 − p2 is given by (0.0333680, 0.347383). If other tests
or conÞdence intervals are required, then these are available via the Op

¯
tions

button. The Wilson estimates and associated conÞdence interval are obtained
from the software by modifying the data as indicated above.

Power calculations and minimum sample sizes to achieve a prescribed power
can be obtained using P

¯
ower and Sample Size I 2 P

¯
roportions.
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Display 8.2.1: Dialog box for inferences comparing two proportions.

8.3 Exercises

Don�t forget to quote standard errors for any approximate probabilities you
quote in the following problems.

1. Carry out a simulation with the Binomial(40, .3) distribution to assess the
coverage of the 95% conÞdence interval for a single proportion.

2. The accuracy of a conÞdence interval procedure can be assessed by com-
puting probabilities of covering false values. Approximate the probabilities
of covering the values .1, .2, ..., .9 for the 95% conÞdence interval for a
single proportion when sampling from the Binomial(20, .5) distribution.

3. Calculate the power of the two-sided test for testing H0 : p = .5 at level
α = .05 at the points n = 100, p = .1, ..., 9 and plot the power curve.

4. Carry out a simulation with the Binomial(40, .3) and the Binomial(50, .4)
distribution to assess the coverage of the 95% conÞdence interval for a
difference of proportions.

5. Calculate the power of the two-sided test for testing H0 : p1 = p2 versus
Ha : p1 6= p2 at level α = .05 at n1 = 40, p1 = .3, n2 = 50, p2 = .1, ..., 9
and plot the power curve.
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Inference for Two-Way
Tables

New Minitab commands discussed in this chapter
S
¯
tat I T

¯
ables I Chi-Square G

¯
oodness-of-Fit Test (One variable)

S
¯
tat I T

¯
ables I Chi-Square Te

¯
st (Two-Way Table in Worksheet)

S
¯
tat I T

¯
ables I C

¯
ross Tabulation and Chi-Square

In this chapter, inference methods are discussed for comparing the distributions
of a categorical variable for a number of populations and for looking for relation-
ships among a number of categorical variables deÞned on a single population.
The chi-square test is the basic inferential tool, and this is implemented in
Minitab via the S

¯
tat I T

¯
ables I C

¯
ross Tabulation and Chi-Square command, if

the data is in the form of raw incidence data, or the S
¯
tat I T

¯
ables I Chi-Square

Te
¯
st command, if the data comes in the form of counts.

9.1 Tabulating and Plotting

The relationship between two categorical variables is typically assessed by cross-
tabulating the variables in a table. For this, the S

¯
tat I T

¯
ables I C

¯
ross Tab-

ulation and Chi-Square command is available. We illustrate using an example
where each categorical variable takes two values. Of course, each variable can
take a number of values, and this need not be the same for each categorical
variable.
Suppose that we have collected data on courses being taken by students and

have recorded a 1 in C2 if the student is taking Statistics and a 0 if not. If the
student is taking Calculus, a 1 is recorded in C3 and a 0 otherwise. Also, we
have recorded the student number in C1. These data for 10 students follow.

129
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Row C1 C2 C3
1 12389 1 0
2 97658 1 0
3 53546 0 1
4 55542 0 1
5 11223 1 1
6 77788 0 0
7 44567 1 1
8 32156 1 0
9 33456 0 1
10 67945 0 1

We cross-tabulate the data in C2 and C3 using the S
¯
tat I T

¯
ables I C

¯
ross

Tabulation and Chi-Square command and the dialog box shown in Display 9.1.1.

Display 9.1.1: Dialog box for producing tables.

This produces the output

Rows: C2 Columns: C3

0 1 All

0 1 4 5
1 3 2 5
All 4 6 10

Cell Contents: Count

in the Session window that reveals there is 1 student taking neither Statistics
nor Calculus, 4 students taking Calculus but not Statistics, 3 students taking
Statistics but not Calculus, and 2 students taking both subjects. The row
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marginal totals are produced on the right, and the column marginal totals are
produced below the table. We have chosen the cell entries in the table to be
frequencies (counts), but we can see from Display 9.1.1 that there are other
choices. For example, if we had checked the Total percents box instead, we
obtain the output

Rows: C2 Columns: C3

0 1 All

0 10.00 40.00 50.00
1 30.00 20.00 50.00
All 40.00 60.00 100.00

Cell Contents: % of Total

where each entry is the percentage that cell represents of the total number of
observations used to form the table. Of course, we can ask for more than just
one of these cell statistics to be produced in a table.
To examine the relationship between the two variables, we compare the

conditional distributions given row, by checking the Row percents box, or the
conditional distributions given column, by checking the Column percents box.
For example, choosing to calculate row percents gives us the table

Rows: C2 Columns: C3

0 1 All

0 20.00 80.00 100.00
1 60.00 40.00 100.00
All 40.00 60.00 100.00

Cell Contents: % of Row

that gives the row distributions as 20%, 80% for the Þrst row and 60%, 40%
for the second row. So it looks as if there is a strong relationship between the
variable indicating whether or not a student takes Statistics and the variable
indicating whether or not a student takes Calculus. For example, a student who
does not take Statistics is more likely to take Calculus than a student who does
take Statistics. Of course, this is not a real data set, and it is small at that. So,
in reality, we could expect a somewhat different conclusion.
Some graphical techniques are also available for this problem. In Figure

9.1.1, we have plotted the conditional distributions, given row, in a bar chart
using the command G

¯
raph I Bar

¯
Chart. This in turn leads to the dialog box

shown in Display 9.1.2, where we have selected Cluster. This leads to the dialog
box shown in Display 9.1.3, where we have entered the variables C2, C3 in the
Categorical variables box (note order) and then clicked on Chart

¯
Options to

bring up the dialog box shown in Display 9.1.4. Here we have indicated that we
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want to display the distributions as percents. These plots are an evocative way
to display the relationship between the variables.

Pe
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Chart of C2, C3

Percent within levels of C2.

Figure 9.1.1: Conditional distributions of columns given row.

Display 9.1.2: Dialog box for selecting type of bar chart.
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Display 9.1.3: Dialog box for choosing variables to graph in bar chart.

Display 9.1.4: Dialog box for selecting options for the bar chart.

The corresponding session command is table and there are the subcom-
mands totpercents, rowpercents, and colpercents to specify whether or
not we want total percents, row percents, and column percents to be printed for
each cell. For example,

MTB > table c2 c3

produces the table of counts shown previously. If you do not want the marginal
statistics to be printed, use the noall subcommand. Any cases with missing
values are not included in the cross-tabulation. If you want them to be included,
use the missing subcommand and a row or column will be printed, whichever
is relevant, for missing values. For example, the subcommand

SUBC> missing c2 c3;

ensures that any cases with missing values in C2 or C3 are also tabulated.
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9.2 The Chi-square Test

If you have a single variable, you use the S
¯
tat I T

¯
ables I Chi-Square G

¯
oodness-

of-Fit Test (One variable) command to carry out a chi-square goodness-of-Þt
test to test whether or not you have a sample from speciÞc distribution. For
example, suppose we have a response that takes three possible values�namely,
1, 2, and 3�and pi is the probability that a response equals i. Suppose we want
to test the hypothesis H0 : p1 = .2, p2 = .4, p3 = .4 and we have a sample of 100
where 22 values equal 1, 45 values equal 2, and 23 values equal 3. The counts
are stored in C1 and hypothesized probabilities are stored in C2. Then the S

¯
tat

I T
¯
ables I Chi-Square G

¯
oodness-of-Fit Test (One variable) command together

with the dialog box shown in Display 9.2.1 gives the output

Chi-Square Goodness-of-Fit Test for Observed Counts in Variable:
C1

Test Contribution
Category Observed Proportion Expected to Chi-Sq
1 22 0.2 20 0.200
2 45 0.4 40 0.625
3 33 0.4 40 1.225
N DF Chi-Sq P-Value
100 2 2.05 0.359

and with the P -value equal to 0.359 we do not reject H0. The output also in-
cludes a Chart of Observed and Expected Values and a Chart of Contribution to
the Chi-Square Value by Category. These barcharts can be helpful in identifying
where deviations from H0 arise when we have evidence against H0.

Display 9.2.1: Dialog box for a chi-square test on a single variable.
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Now suppose we have more than one variable and we are interested in
whether or not a relationship exists among these variables. Recall that there
is no relationship between the variables�i.e., the variables are independent�if
and only if the conditional distributions of one variable given the other are all
the same. So in a two-way table we can assess whether or not there is a relation-
ship by comparing the observed conditional distributions of the columns given
the rows. Of course, there will be differences in these conditional distributions
simply due to sampling error as we only have a sample and we are only esti-
mating the true conditional distributions. Whether or not these differences are
signiÞcant is assessed by conducting a chi-square test. When the table has r rows
and c columns and we are testing for independence, then k = (r − 1)(c − 1).
Note that for a cell, the square of a cell�s standardized residual is that cell�s
contribution to the chi-square statistic, namely

(observed count in cell − expected count in cell)2

expected count in cell

For example, suppose for 60 cases we have a categorical variable in C1 taking
the values 0 and 1 and a categorical variable in C2 taking the values 0, 1 and
2. Consider the S

¯
tat I T

¯
ables I C

¯
ross Tabulation and Chi-Square command

with the dialog box as in Display 9.2.2.

Display 9.2.2: Dialog box for cross-tabulating categorical variables.

Then clicking on the OK button produced the table

Rows: C1 Columns: C2
0 1 2 All

0 10 13 11 34
1 9 10 7 26
All 19 23 18 60
Cell Contents: Count
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in the Session window. This records the counts in the 6 cells of a table, with C1
indicating row and C2 indicating column. The variable C1 could be indicating
a population with C2 a categorical variable deÞned on each population (or
conversely), or both variables could be deÞned on a single population.
When using the S

¯
tat I T

¯
ables I C

¯
ross Tabulation and Chi-Square com-

mand, a chi-square analysis can be carried out by clicking the Chi-Square box
in the dialog box of Display 9.2.2 as this brings up the dialog box shown in
Display 9.2.3 where we have checked the Chi-square analysis box.

Display 9.2.3: Dialog box for carrying out a chi-square analysis.

The remaining boxes give additional options concerning what is printed in the
Session window. We have chosen to have only the cell count printed for each
cell in addition to the chi-square statistic and its associated P -value. Clicking
on the OK button in this dialog box leads to the output

Rows: C1 Columns: C2
0 1 2 All

0 10 13 11 34
1 9 10 7 26
All 19 23 18 60

Cell Contents: Count
Pearson Chi-Square = 0.271, DF = 2, P-Value = 0.873

being printed in the Session window. The P -value for testing the null hypothesis
that these two categorical variables are independent against the alternative that
they are not independent is .873, and so we do not reject the null hypothesis.
It is possible to cross-tabulate more than two variables and to test simulta-

neously for mutual statistical independence among the variables using the S
¯
tat

I T
¯
ables I C

¯
ross Tabulation and Chi-Square command. Recall that it is also

a good idea to plot the conditional distributions as well.
The general syntax of the corresponding session command table command

is

table E1 . . . Em;
chisquare V.
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where E1, ..., Em are columns containing categorical variables and V is either
omitted or takes the value 1, 2, or 3. The value 1 is the default and causes
the count to be printed in each cell and can be omitted. The value 2 causes
the count and the expected count, under the hypothesis of independence, to be
printed in each cell. The value 3 causes the count, the expected count, and the
standardized residual to be printed in each cell. For example, the command

MTB > table c1 c2;
SUBC> chisquare.

also produces the above output.

9.3 Analyzing Tables of Counts

If you have a two-way cross-tabulation for which the cell counts are already
tabulated, you can use the S

¯
tat I T

¯
ables I Chi-Square Te

¯
st (Two-Way Table

in Worksheet) command on this data to carry out the chi-square analysis. For
example, suppose we put the following data in columns C1�C3 as

Row C1 C2 C3
1 51 22 43
2 92 21 28
3 68 9 22

corresponding to the counts arising from the cross-classiÞcation of a row and
column variable. We then use the command S

¯
tat I T

¯
ables I Chi-Square Te

¯
st

(Two-Way Table in Worksheet) on this data with the dialog box as shown in
Display 9.3.1.

Display 9.3.1: Dialog box for chi-square test on a table of counts.
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This produces the output

Expected counts are printed below observed counts
C1 C2 C3 Total

1 51 22 43 116
68.75 16.94 30.30
4.584 1.509 5.320

2 92 21 28 141
83.57 20.60 36.83
0.850 0.008 2.119

3 68 9 22 99
58.68 14.46 25.86
1.481 2.062 0.577

Total 211 52 93 356
Chi-Sq = 18.510, DF = 4, P-Value = 0.001

in the Session window. The chi-square statistic has the value 18.51 in this
case and the P -value is .001, so we reject the null hypothesis that there is no
relationship between the row and column variables.
The general syntax of the corresponding session command chisquare com-

mand is

chisquare E1 . . . Em

and this computes the expected cell counts, the chi-square statistic, and the
associated P -value for the table in columns E1, ..., Em. Note that there is a
limitation on the number of columns; namely we must havem ≤ 7. For example,
the command

MTB > chisquare c1-c3

produces the above chi-square analysis.

9.4 Exercises

1. Suppose that the observations in the following table are made on two cat-
egorical variables where variable 1 takes 2 values and variable 2 takes 3
values. Using the S

¯
tat I T

¯
ables I C

¯
ross Tabulation and Chi-Square com-

mand, cross-tabulate this data in a table of frequencies and in a table of
relative frequencies. Calculate the conditional distributions of variable 1,
given variable 2. Plot the conditional distributions. Is there any indication
of a relationship existing between the variables? How many conditional
distributions of variable 2, given variable 1, are there?

Obs 1 2 3 4 5 6 7 8 9 10
Var 1 0 0 0 1 1 0 1 0 0 1
Var 2 2 1 0 0 2 1 2 0 1 1
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2. Suppose that two variables X and Y are cross-tabulated giving rise to the
following table.

Y = 1 Y = 2
X = 1 3388 389
X = 2 5238 1164
X = 3 1703 1699
X = 4 762 2045

Use Minitab commands to calculate the marginal distributions of X and
Y, and the conditional distributions of Y given X. Note that you cannot
use

¯
Stat I T

¯
ables I C

¯
ross Tabulation and Chi-square for this. Plot the

conditional distributions.

3. Use Minitab to directly compute the expected frequencies, standardized
residuals, chi-square statistic, and P -value for the hypothesis of indepen-
dence in the table of Exercise 9.2.

4. Generate 1000 values from a uniform distribution on the integers 0, 1, . . . , 9.
Use the S

¯
tat I T

¯
ables I Chi-Square G

¯
oodness-of-Fit Test (One variable)

command to test that this generator is working correctly.

5. Suppose that we have the following table.

Y = 1 Y = 2 Y = 3
X = 1 256 38 121
X = 2 47 54 73
X = 3 203 111 23

Calculate and compare the conditional distributions of Y given X. Plot
these conditional distributions in bar charts. Carry out a chi-square analy-
sis to determine whether or not the variables in this problem are related.

6. Suppose we have a discrete distribution on the integers 1, . . . , k with prob-
abilities p1, . . . , pk. Further, suppose we take a sample of n from this dis-
tribution and record the counts f1, . . . , fk, where fi records the number
of times we observed i. It can be shown that

P (f1 = n1, . . . , fk = nk) =
n!

n1! · · ·nk!p
n1
1 · · · pnkk

when the ni are nonnegative integers that sum to n. This is called the
Multinomial(n, p1, . . . , pk) distribution, and it is a generalization of the
Binomial(n, p) distribution. It is the relevant distribution for describing
the counts in cross-tabulations. For k = 4, p1 = p2 = p3 = p4 = .25, n = 3,
calculate these probabilities and verify that it is a probability distribution.
Note that the gamma function is available with the C

¯
alc I Cal

¯
culator

command (see Appendix B.1), and this can be used to evaluate factorials
such as n! and also 0! = 1.



140 Chapter 9

7. Calculate P (f1 = 3, f2 = 5, f3 = 2) for the Multinomial(10, .2, .5, .3) dis-
tribution.

8. Generate (f1, f2, f3) from the Multinomial(1000, .2, .4, .4) distribution. Hint:
Generate a sample of 1000 from the discrete distribution on 1, 2, 3 with
probabilities .2, .4 , .4, respectively.
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Inference for Regression

New Minitab command discussed in this chapter
S
¯
tat I R

¯
egression I Re

¯
sidual Plots

This chapter deals with inference for the simple regression model. A regression
analysis can be carried out using the command S

¯
tat I R

¯
egression I R

¯
egression.

The regression as well as a scatterplot with the least-squares line overlaid can
be obtained via S

¯
tat I R

¯
egression I F

¯
itted Line Plot. Some aspects of these

commands were discussed in II.2.3. Residual plots can be obtained using S
¯
tat

I R
¯
egression I Re

¯
sidual Plots, provided you have saved the residuals.

10.1 Simple Regression Analysis
The command S

¯
tat I R

¯
egression I R

¯
egression provides a Þt of the model

y = α + βx + M. Here, y is the response variable, x is the explanatory or
predictor variable, M is the error variable with an N (0, σ) distribution, and α,
β, and, σ are Þxed unknown constants. These assumptions imply that, given
x, the distribution of y is distributed N (α+ βx, σ). So the mean of y given x
is α+ βx, and this gives the relationship between y and x; i.e., as x changes at
most the mean of the conditional distribution of y given x changes according to
the linear function α+ βx.
The primary aim of a regression analysis is to make inferences about the

unknown intercept α and the unknown slope β and to make predictive inferences
about future values of y at possibly new values of x. All inferences are dependent
on this model being correct. If we go ahead and report inferences when the
model is incorrect, we run the risk of these inferences being invalid. So we must
always check that the model makes sense in light of the data obtained. This is
referred to as model checking.
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We let (x1, y1) , . . . , (xn, yn) denote the data on which we will base all our
inferences. The basic inference method for this model is to use least-squares to
estimate α and β, and we denote these estimates by a and b, respectively; i.e.,
a and b are the values of α and β that minimize

S2 =
nX
i=1

(yi − α− βxi)2 .

We predict the value of a future y, when the explanatory variable takes the
value x, by �y = a + bx. The ith Þtted value �yi is the estimate of the mean of
y at xi; i.e., �yi = a + bxi. The ith residual is given by ri = yi − �yi; i.e., it is
the error incurred when predicting the value of y at xi by �yi. We estimate the
standard deviation σ by

s =

vuut 1

n− 2
nX
i=1

(yi − �yi)2 =
vuut 1

n− 2
nX
i=1

r2i

which equals the square root of the MSE (mean-squared error) for the regression
model.
Of course, the estimates a, b, and �y are not equal to the quantities that

they are estimating. It is an important aspect of a statistical analysis to say
something about how accurate these estimates are, and for this we use the
standard error of the estimate. The standard error of a is given by

s

s
1

n
+

x̄2Pn
i=1 (xi − x̄)2

.

The standard error of b is given by

s

s
1Pn

i=1 (xi − x̄)2
.

The standard error of the estimate a+ bx of the mean α+ βx is given by

s

s
1

n
+

(x− x̄)2Pn
i=1 (xi − x̄)2

.

To predict y at x, we must take into account the additional variation caused by
the error M, and so the standard error of a+ bx, as a predictor of y at x, is given
by

s

s
1 +

1

n
+

(x− x̄)2Pn
i=1 (xi − x̄)2

.

Finally, the residual ri, as an estimate of the error incurred at xi, has standard
error
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s

s
1− 1

n
− (xi − x̄)2Pn

i=1 (xi − x̄)2
.

The ith standardized residual is then given by ri divided by this quantity.
We now illustrate regression analysis using Minitab. Suppose we have the

following data points

(x1, y1) = (1966, 73.1)

(x2, y2) = (1976, 88.0)

(x3, y3) = (1986, 119.4)

(x4, y4) = (1996, 127.1)

where x is year and y is yield in bushels per acre and that we give x the
name year and y the name yield. The S

¯
tat I R

¯
egression I F

¯
itted Line Plot

command with yield as the response and year as predictor produces the plot
of Display 10.1.1
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Fitted Line Plot
yield =  - 3729 + 1.934 year

Display 10.1.1: Scatterplot of the data together with the least-squares line.

The S
¯
tat I R

¯
egression I F

¯
itted Line Plot command also produces some of

the Session window output below in the Session window. Because we wanted
more features of a regression analysis than this command provides, we resorted
to the S

¯
tat I R

¯
egression I R

¯
egression command together with the dialog boxes

as in Displays 10.1.2, 10.1.3, 10.1.4, and 10.1.5.
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Display 10.1.2: Dialog box for simple regression analysis.

Display 10.1.3: Dialog box for selecting graphs to be plotted in regression analysis.

Display 10.1.4: Dialog box for selecting predictive inferences in a regression analysis.
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Display 10.1.5: Dialog box for selecting quantities to be stored in a regression
analysis.

These entries in the dialog boxes produce the output

Regression Analysis: yield versus year
The regression equation is
yield = - 3729 + 1.93 year

Predictor Coef SE Coef T P
Constant -3729.4 606.6 -6.15 0.025
year 1.9340 0.3062 6.32 0.024

S = 6.84697 R-Sq = 95.2% R-Sq(adj) = 92.8%

Analysis of Variance
Source DF SS MS F P
Regression 1 1870.2 1870.2 39.89 0.024
Residual Error 2 93.8 46.9
Total 3 1963.9

Predicted Values for New Observations
New
Obs Fit StDev Fit 95.0% CI 95.0% PI
1 150.25 8.39 (114.17, 186.33) (103.67, 196.83) X
X denotes a row with X values away from the center

in the Session window.
The dialog box of Display 10.1.2 establishes that yield is the response and

year is the explanatory variable. The output from this gives the least-squares
line as y = −3729+1.93x. Further, the standard error of a = −3729.4 is 606.6,
the standard error of b = 1.934 is 0.3062, the t statistic for testing H0 : α = 0
versus Ha : α 6= 0 is −6.15 with P -value 0.025, and the t statistic for testing
H0 : β = 0 versus Ha : β 6= 0 is 6.32 with P -value 0.024. The estimate of
σ is s = 6.847 and the squared correlation�coefficient of determination�is
R2 = .952, indicating that 95.2% of the observed variation in y is explained by
the changes in x. The Analysis of Variance table indicates that the F statistic
for testing H0 : β = 0 versus Ha : β 6= 0 is 39.89 with P -value 0.024 and
the MSE is 46.9. So we deÞnitely reject the null hypothesis that there is no
relationship between the response and the predictor.
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Before clicking on the OK button of the dialog box of Display 10.1.2, however,
we clicked on the Graphs button to bring up the dialog box of Display 10.1.3, the
Op
¯
tions button to bring up the dialog box of Display 10.1.4, and the Storage

button to bring up the dialog box of Display 10.1.5. In the Graphs dialog
box, we speciÞed that we want the standardized residuals plotted in a normal
probability plot and plotted against the variable year. These plots appear
in Displays 10.1.6 and 10.1.7, respectively, and don�t indicate that any model
assumptions are being violated.
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Display 10.1.6: Normal probability plot of the standardized residuals.
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Display 10.1.7: A plot of the standardized residuals versus the explanatory variable.

In the Options dialog box, we speciÞed that we wanted to estimate the mean
value of y at x = 2006 and report and store this value together with a 95%
conÞdence interval for this quantity and a 95% prediction interval for a new
observation at x = 2006. The output above gives the estimated mean value
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at x = 2006 as 150.25 with standard error 8.39, and the 95% conÞdence and
prediction intervals for this quantity are (114.17, 186.33) and (103.67, 196.83),
respectively. The estimate is stored in the worksheet in a variable called PFIT1,
and the endpoints of the conÞdence and prediction intervals are stored in the
worksheet with the names CLIM1, CLIM2, PLIM1, PLIM2, respectively. In the
Storage dialog box, we speciÞed that we wanted to store the values of a and b,
the Þtted values, the residuals, and the standardized residuals. The residuals
are stored in a variable called RESI1, the standardized residuals are stored in a
variable called SRES1, the values of a and b are stored consecutively in a variable
named COEF1, and the Þtted values are stored in a variable called FITS1.
All of the stored quantities are available for further use. Suppose we want a

95% conÞdence interval for b. The commands

MTB > invcdf .975;
SUBC> student 2.
Student�s t distribution with 2 DF
P( X <= x) x

0.9750 4.3027
MTB > let k2=4.3027*.3062
MTB > let k3=coef1(2)-k2
MTB > let k4=coef1(2)+k2
MTB > print k3 k4
K3 0.616513
K4 3.25149

give this interval as (0.617, 3.251).
The general syntax of the corresponding session command regress command

for Þtting a line is

regress E11 E2

where E1 contains the values of the response variable y and E2 contains the
values of the explanatory variable x. There are a number of subcommands
that can be used with regress, and these are listed and explained below.

coefficients E1 � stores the estimates of the coefficients in column E1.

constant (noconstant) � ensures that β0 is included in the regression equa-
tion, while noconstant Þts the equation without β0.

Þts E1 � stores the Þtted values �y in E1.

ghistogram � causes a histogram of the residuals speciÞed in rtype to be
plotted.

gÞts� causes a plot of the residuals speciÞed in rtype versus the Þtted values
to be plotted.

gnormal � causes a normal quantile plot of the residuals speciÞed in rtype
to be plotted.
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gorder � causes a plot of the residuals speciÞed in rtype versus order to be
plotted.

gvariable E1 � causes a plot of the residuals speciÞed in rtype versus the
explanatory variable in column E1 to be plotted.

mse E1 � stores the mean squared error in constant E1.

predict E1 . . . Ek � (k is the number of explanatory variables where k = 1 with
simple linear regression) computes and prints the predicted values at E1, ..., Ek,
where these are columns of the same length or constants with Ei correspond-
ing to the ith explanatory variable. Also, this prints the estimated standard
deviations of these values, conÞdence intervals for these values, and prediction
intervals. The subcommand predict in turn has a number of subcommands.

conÞdence V � V speciÞes the level for the conÞdence intervals.

pÞts E1 � stores the predicted values in E1.

psdÞts E1 � stores the estimated standard deviations of the
predicted values in E1.

climits E1 E2 � stores the lower- and upper-conÞdence limits for the
predicted values in E1 and E2, respectively.

plimits E1 E2 � stores the lower- and upper-prediction limits for the
predicted values in E1 and E2, respectively.

residuals E1 � stores the regular residuals in E1.

rtype V � indicates what type of residuals are to be used in the plotting
subcommands, where V = 1 is the default and speciÞes regular residuals, V
= 2 speciÞes standardized residuals, and V = 3 speciÞes Studentized deleted
residuals.

sresiduals E1 � stores the standardized residuals�the residuals divided by
their estimated standard deviations�in E1.

For example, the session commands

MTB > regress �yield� 1 �year�;
SUBC> coefficients c3;
SUBC> mse k1;
SUBC> fits c4;
SUBC> residuals c5;
SUBC> sresiduals c6;
SUBC> rtype 2;
SUBC> gnormal;
SUBC> gvariable �year�;
SUBC> predict 2006;
SUBC> pfits c7;
SUBC> climits c8 c9;
SUBC> plimits c10 c11.
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produce the same results as the menu commands with the dialog boxes as in
Displays 10.1.2, 10.1.3, 10.1.4, and 10.1.5 for the example of this section although
the ordering of the columns is different.

10.2 Exercises

1. In C1, place the x values −3.0, −2.5, −2.0, . . . , 2.5, 3.0. In C2, store a
sample of 13 from the error M, where M is distributed N(0, 2). In C3, store
the values y = β0 + β1x + M = 1 + 3x + M. Calculate the least-squares
estimates of β0 and β1 and the estimate of σ2. Repeat this example but
take Þve observations at each value of x. Compare the estimates from the
two situations and their estimated standard deviations.

2. In C1, place the x values −3.0, −2.5, −2.0, . . . , 2.5, 3.0. In C2, store a
sample of 13 from the error M, where M is distributed N(0, 2). In C3, store
the values y = β0 + β1x + M = 1 + 3x + M. Plot the least-squares line.
Repeat your computations twice after changing the Þrst y observation to
20 and then to 50, and make sure the scales on all the plots are the same.
What effect do you notice?

3. In C1, place the x values −3.0, −2.5, −2.0, . . . , 2.5, 3.0. In C2, store a
sample of 13 from the error M, where M is distributed N(0, 2). In C3, store
the values y = β0 + β1x + M = 1 + 3x + M. Plot the standardized
residuals in a normal quantile plot against the Þtted values and against
the explanatory variable. Repeat this, but in C3 place the values of y =
1+ 3x− 5x2 + M. Compare the residual plots.

4. In C1, place the x values −3.0, −2.5, −2.0, . . . , 2.5, 3.0. In C2, store a
sample of 13 from the error M, where M is distributed N(0, 2). In C3,
store the values y = β0 + β1x + M = 1 + 3x + M. Plot the standardized
residuals in a normal quantile plot against the Þtted values and against the
explanatory variable. Repeat this, but in C2 place the values of a sample
of 13 from the Student(1) distribution. Compare the residual plots.

5. In C1, place the x values −3.0, −2.5, −2.0, . . . , 2.5, 3.0. In C2, store a
sample of 13 from the error M, where M is distributed N(0, 2). In C3, store
the values y = β0 + β1x + M = 1 + 3x + M. Calculate the predicted values
and the lengths of .95 conÞdence and prediction intervals for this quantity
at x = .1, 1.1, 2.1, 3.5, 5, 10, and 20. Explain the effect that you observe.

6. In C1, place the x values −3.0, −2.5, −2.0, . . . , 2.5, 3.0. In C2, store a
sample of 13 from the error M, where M is distributed N(0, 2). In C3, store
the values y = β0 + β1x + M = 1 + 3x + M. Calculate the least-squares
estimates and their estimated standard deviations. Repeat this, but for
C1 the x values are to be 12 values of −3 and one value of 3. Compare
your results and explain them.
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Multiple Regression

In this chapter, we discuss multiple regression; i.e., we have a single numeric
response variable y and k > 1 explanatory variables x1, . . . , xk. There are no
real changes in the behavior of the S

¯
tat I R

¯
egression I R

¯
egression command,

and the descriptions we gave in Chapter 10 apply to this chapter as well. We
present an example of a multiple regression analysis using Minitab.
A multiple regression analysis can be carried out using S

¯
tat I R

¯
egression

I R
¯
egression and Þlling in the dialog box appropriately. Residual plots can be

obtained using S
¯
tat I R

¯
egression I Re

¯
sidual Plots provided you have saved

the residuals. Also available in Minitab are stepwise regression using S
¯
tat I

R
¯
egression I R

¯
egression I S

¯
tepwise and best subsets regression using S

¯
tat I

R
¯
egression I R

¯
egression I B

¯
est Subsets.

11.1 Example of a Multiple Regression

We consider a generated multiple regression example to illustrate the use of the
S
¯
tat I R

¯
egression I R

¯
egression command in this context. Suppose that k = 2

and y = β0+β1x1+β2x2+ M = 1+2x1+3x2+ M, where M is distributed N(0, σ)
with σ = 1.5. We generated a sample of 16 from the N(0, 1.5) distribution and
placed these values in C1. In C2 we stored the values of x1 and in C3 stored
the values of x2. Suppose that these variables take every possible combination
of x1 = −1,−.5, .5, 1 and x2 = −2,−1, 1, 2. In C4, we placed the values of the
response variable y.
We then proceeded to analyze this data as if we didn�t know the values of β0,

β1, β2, and σ. The S¯
tat I R

¯
egression I R

¯
egression command as implemented

in Display 11.1.1, together with Displays 11.1.2, 11.1.3 and 11.1.4,
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Display 11.1.1: Dialog box for the S
¯
tat IR

¯
egression IR

¯
egression command in the

example.

Display 11.1.2: Dialog box obtained by clicking on the St
¯
orage button in the dialog

box depicted in Display 11.1.1. We have requested that the least-squares coefficients
be stored.

Display 11.1.3: Dialog box obtained by clicking on the Options button in the dialog
box depicted in Display 11.2.1. We have requested that a value be predicted at the
settings x1 = 0, x2 = 0.
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Display 11.1.4: Dialog box obtained by clicking on the Graphs button in the dialog
box depicted in Display 11.1.1.

produces the output in the Session window

Regression Analysis: C4 versus C2, C3
The regression equation is
C4 = 0.996 + 2.32 C2 + 3.25 C3
Predictor Coef SE Coef T P
Constant 0.9958 0.2811 3.54 0.004
C2 2.3162 0.3556 6.51 0.000
C3 3.2517 0.1778 18.29 0.000
S = 1.12451 R-Sq = 96.7% R-Sq(adj) = 96.2%
Analysis of Variance
Source DF SS MS F P
Regression 2 476.58 238.29 188.44 0.000
Residual Error 13 16.44 1.26
Total 15 493.02
Source DF Seq SS
C2 1 53.65
C3 1 422.93
Predicted Values for New Observations
New
Obs Fit SE Fit 95% CI 95% PI
1 0.996 0.281 (0.388, 1.603) (-1.508, 3.500)
Values of Predictors for New Observations
New
Obs C2 C3
1 0.000000 0.000000
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and the plot in Display 11.1.5. This speciÞes the least-squares equation as
y = 0.996 + 2.32x1 + 3.25x2. For example, the estimate of β1 is b1 = 2.3162
with standard error 0.3556 and the t statistic for testing H0 : β1 = 0 versus
Ha : β1 6= 0 is 6.51 with P -value 0.000. The estimate of σ is s = 1.12451 and
R2 = .967. The Analysis of Variance table indicates that the F statistic for
testing H0 : β1 = β2 = 0 versus Ha : β1 6= 0 or β2 6= 0 takes the value 188.44
with P -value 0.000 so we would deÞnitely reject the null hypothesis. Also, the
MSE is given as 1.26.
The table after the Analysis of Variance table is called the Sequential Analy-

sis of Variance table and is used when we want to test whether or not explana-
tory variables are in the model in a prescribed order. For example, the table
that contains the rows labeled C2 and C3 allows for the testing of the sequence
of hypotheses H0 : β2 = 0 versus Ha : β2 6= 0 and�if we reject this (and only
if we do)�then testing the hypothesis H0 : β1 = 0 versus Ha : β1 6= 0. To test
these hypotheses, we Þrst compute F = 422.93/s2 = 422.93/1.26 = 335.66 and
then compute the P -value P (F (1, 13) > 335.66) = 0.000, and so we reject and
go no further. If we had not rejected this null hypothesis, the second null hy-
pothesis would be tested in exactly the same way using F = 53.65/1.26 = 42.58.
Obviously, the order in which we put variables into the model matters with these
sequential tests. Sometimes, it is clear how to do this; for example, in Þtting a
quadratic model y = β0 + β1x+ β2x2 + M we put x1 = x and x2 = x2 and test
for the existence of the quadratic term Þrst and, if no quadratic term is found,
test for the existence of the linear term. Sometimes, the order for testing is not
as clear and the sequential tests are not as appropriate.
The dialog box in Display 11.1.2 is obtained by clicking on the Storage button

in the dialog box of Display 11.1.1. We stored the values of the least-squares
estimates in C5, as the dialog box in Display 11.1.2 indicates, and so these are
available for forming conÞdence intervals. Then, for example, the commands

MTB > invcdf .95;
SUBC> student 13.
Student�s t distribution with 13 DF
P(X <= x) x
0.9500 1.7709
MTB > let k1=1.7709*0.1778
MTB > let k2=c5(3)-k1
MTB > let k3=c5(3)+k1
MTB > print k2 k3
K2 2.93681
K3 3.56654

compute a 90% conÞdence interval for β2 as (2.93681, 3.56654), which we note
does cover the true value in this case.
The dialog box in Display 11.1.3 is obtained by clicking on the Options

button in the dialog box of Display 11.1.1. The dialog box in Display 11.1.3
indicates that we requested that the program compute the predicted value at
x1 = 0, x2 = 0 as well as the conÞdence and prediction intervals for this value.
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We obtained the predicted value as 0.996 with standard error 0.281 and as
well the 95% conÞdence and prediction intervals given by (0.388, 1.603) and
(−1.508, 3.500), respectively.
The dialog box in Display 11.1.4 is obtained by clicking on the Graphs button

in the dialog box of Display 11.1.1. Here we requested a normal quantile plot of
the standardized residuals, which we show in Display 11.1.5, and also requested
plots of the standardized residuals against each of the explanatory variables,
which we don�t show. All of these plots look reasonable.

Display 11.1.5: Normal probability plot of the standardized residuals for the
example.

The following session commands produce the above output for the example
of this section.

MTB > regress c4 2 c2 c3;
SUBC> coefficients c5;
SUBC> rtype 2;
SUBC> gnormal;
SUBC> gvariable C2 C3;
SUBC> predict 0 0;
SUBC> climits c6 c7;
SUBC> plimits c8 c9.

We can also control the amount of output obtained from the S
¯
tatIR

¯
egression

I R
¯
egression command. This is accomplished by clicking on the Results button

of the dialog box shown in Display 11.1.1 bringing up Display 11.1.6. We have
requested that, in addition to the Þtted regression equation, least-squares coef-
Þcients, s, R2, and ANOVA table, the table of sequential sums of squares (for
the order in which the variables appear in the model), and a table of unusual
observations be printed.
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Display 11.1.6: Dialog box obtained by clicking on the Results button in the dialog
box depicted in Display 11.1.1.

The session command to control the amount output from the regress and
other Minitab commands is brief. The general syntax of the brief command
is

brief V

where V is a nonnegative integer that controls the amount of output. For any
given command the output is dependent on the speciÞc command although V =
0 suppresses all output, for all commands, beyond error messages and warnings.
The default level of V is 2. When V = 3, the regress command produces the
usual output and in addition prints x, y, �y, the standard deviation of �y, y − �y
and the standardized residual. When V = 1, the regress command gives the
same output as when V = 2 but the sequential analysis of variance table is not
printed. Don�t forget that after you set the level of brief, this may affect the
output of all commands you subsequently type and therefore it may need to be
reset.

11.2 Exercises

1. In C1, place the x1 values −3.0,−2.5,−2.0, . . . , 2.5, 3.0. In C2, store a
sample of 13 from the error M, where M is distributed N(0, 2). In C3, store
the values of x2 = x2. In C4 store the values of y = β0+β1x1+β2x2+ M =
1 + 3x+ 5x2 + M. Calculate the least-squares estimates of β0, β1, and β2,
and the estimate of σ2. Carry out the sequential F tests testing Þrst for
the quadratic term and then, if necessary, testing for the linear term.

2. In C1, place the x values −3.0,−2.5,−2.0, . . . , 2.5, 3.0. In C2, store a
sample of 13 from the error M, where M is distributed N(0, 2). Fit the
model y = 1+3cos(x)+5 sin(x)+ M. Calculate the least-squares estimates
of β0, β1, and β2, and the estimate of σ2. Carry out the F test for any
effect due to x. Are the sequential F tests meaningful here?
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3. In C1, place the x1 values −3.0,−2.5,−2.0, . . . , 2.5, 3.0. In C2, store a
sample of 13 from the error M, where M is distributed N(0, 2). In C3, store
the values of x2 = x2. In C4, store the values of y = 1+3cos(x)+5 sin(x)+
M. Next Þt the model y = β0 + β1x1 + β2x2 + M and plot the standardized
residuals in a normal quantile plot and against each of the explanatory
variables.
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One-Way Analysis of
Variance

New Minitab commands discussed in this chapter
S
¯
tat I A

¯
NOVA I O

¯
ne-way

S
¯
tat I A

¯
NOVA I One-way (U

¯
nstacked)

This chapter deals with methods for making inferences about the relationship
existing between a single numeric response variable and a single categorical
explanatory variable. The basic inference methods are the one-way analysis of
variance (ANOVA) and the comparison of means. There are two commands for
carrying out a one-way analysis of variance, namely S

¯
tat I A

¯
NOVA I O

¯
ne-way

and S
¯
tat I A

¯
NOVA I One-way (U

¯
nstacked). They differ in the way the data

must be stored for the analysis.
We write the one-way ANOVA model as xij = µi + Mij, where i = 1, . . . , I

indexes the levels of the categorical explanatory variable and j = 1, . . . , ni
indexes the individual observations at each level, µi is the mean response at
the ith level, and the errors Mij are a sample from the N(0, σ) distribution.
Based on the observed xij, we want to make inferences about the unknown
values of the parameters µ1, . . . , µI , σ.

12.1 A Categorical Variable and a Quantitative
Variable

Suppose that we have two variables�one is categorical and one is quantitative�
and we want to examine the form of the relationship between these variables.
Of course there may not even be a relationship between the variables. We treat
the situation where the categorical variable is explanatory and the quantitative
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variable is the response and examine some basic techniques for addressing this
question.
To illustrate, we use the data in the following table. Here, we have four

different colors of insect trap�lemon yellow, white, green, and blue�and the
number of insects trapped on six different instances of each trap.

Board Color Insects Trapped
Lemon Yellow 45 59 48 46 38 47
White 21 12 14 17 13 17
Green 37 32 15 25 39 41
Blue 16 11 20 21 14 7

We have read these data into a worksheet so that C1 contains the trap color,
and labelled this column BoardColor, with 1 indicating lemon yellow, 2 indi-
cating white, 3 indicating green, and 4 indicating blue, and in C2 we have put
the numbers of insects trapped, and labelled this column InsectsTrapped. We
calculate the mean number of insects trapped for each trap using the S

¯
tat I

T
¯
ables I D

¯
escriptive Statistics command with the dialog boxes as in Displays

12.1.1 and 12.1.2. In the dialog box of Display 12.1.1, we have put BoardColor
into the Categorical variables: For rows box and clicked on the Associated Vari-
ables button to bring up the dialog box of Display 12.1.2. In this box, we have
put InsectsTrapped into the Associated variables box and selected Means to
indicate that we want the mean of C2 to be computed for each value of C1.
Clicking on the OK buttons produces the output

InsectsTrapped
Mean Count

1 47.17 6
2 15.67 6
3 31.50 6
4 14.83 6
All 27.29 24

in the Session window. The fact that the means change from one level of C1 to
another seems to indicate that there is some relationship between the color of
insect trap and the number of insects trapped. As indicated in Display 12.1.1,
there are many other statistics, besides the mean, that we could have chosen to
tabulate.
It is also a good idea to look at a scatterplot of the quantitative variable

versus the categorical variable. We can do this with G
¯
raph I S

¯
catterplot and

obtain the plot shown in Display 12.1.3.
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Display 12.1.1: First dialog box for tabulating a quantitative variable by a categorical
variable.

Display 12.1.2: Second dialog box for tabulating a quantitative variable by a
categorical variable.

Display 12.1.3: Scatterplot of number of InsectsTrapped versus BoardColor.
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Another useful plot in this situation is to create side-by-side boxplots. This
can be carried out using the G

¯
raph I B

¯
oxplot command. The dialog box of

Display 12.1.4 permits the choice of type of boxplot to plot and we have selected
With Groups. In the dialog box of Display 12.1.5 we have put InsectsTrapped
in the G

¯
raph Variables box and BoardColor in the C

¯
ategorical variables for

grouping box. Clicking on the OK buttons produces the plot shown in Display
12.1.6.

Display 12.1.4: Dialog box for selecting type of boxplot.

Display 12.1.5: Dialog box for creating side-by-side boxplots.
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Display 12.1.6: Side-by-side boxplots.

The session command table can also be used for creating the tables we have
described in this section. For the example as described above, the commands

MTB > table c1;
SUBC> means c2.

produce the mean number of insects trapped for each color of trap as given
above. Besides the means subcommand, we have medians, sums, mini-
mums, maximums, n (count of the nonmissing values), nmiss (count of the
missing values), stdev, stats (equivalent to n, means and stdev), and data
(lists the data for each cell). In addition, there is a subcommand proportion
with the syntax

proportion = V E1;

which gives the proportion of cases that have the value V in column E1.

12.2 One-Way Analysis of Variance

The data in the table below arose from a study of reading comprehension de-
signed to compare three methods of instruction called basal, DRTA, and strate-
gies. The data comprise scores on a test attained by children receiving each of
the methods of instruction. There are 22 observations in each group. This study
was conducted by Baumann and Jones of the Purdue School of Education.

Method Scores
Basal 4 6 9 12 16 15 14 12 12 8 13 9 12 12 12 10 8 12 11 8 7 9
DRTA 7 7 12 10 16 15 9 8 13 12 7 6 8 9 9 8 9 13 10 8 8 10
Strat 11 7 4 7 7 6 11 14 13 9 12 13 4 13 6 12 6 11 14 8 5 8
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We now carry out a one-way analysis of variance on this data to determine
if there is any difference between the mean performances of students exposed
to the three teaching methods. For this, we use the S

¯
tat I A

¯
NOVA I O

¯
ne-

way command. For this example, there are I = 3 levels corresponding to the
values Basal, DRTA, and Strat and n1 = n2 = n3 = 22. Suppose that we
have the values of the xij in C1 and the corresponding values of the categorical
explanatory variable in C2, where Basal is indicated by 1, DRTA by 2, and
Strat by 3. The S

¯
tat I A

¯
NOVA I O

¯
ne-way command together with the dialog

boxes shown in Displays 12.2.1, 12.2.2, and 12.2.3 (described below) produce
the output

One-way ANOVA: C1 versus C2
Source DF SS MS F P
C2 2 20.58 10.29 1.13 0.329
Error 63 572.45 9.09
Total 65 593.03

S = 3.014 R-Sq = 3.47% R-Sq(adj) = 0.41%

Individual 95% CIs For Mean Based on
Pooled StDev

Level N Mean StDev -+---------+---------+---------+--------
Basal 22 10.500 2.972 (-------------*-------------)
DRTA 22 9.727 2.694 (-------------*-------------)
Strat 22 9.136 3.342 (-----------*------------)

-+---------+---------+---------+--------
8.0 9.0 10.0 11.0

Pooled StDev = 3.014 8.4 9.6 10.8 12.0

Fisher 95% Individual Confidence Intervals
All Pairwise Comparisons among Levels of C2
Simultaneous confidence level = 87.90%

C2 = Basal subtracted from:
C2 Lower Center Upper -+---------+---------+---------+
DRTA -2.589 -0.773 1.044 (-----------*-----------)
Strat -3.180 -1.364 0.453 (-----------*-----------)

-+---------+---------+---------+
-3.0 -1.5 0.0 1.5

C2 = DRTA subtracted from:
C2 Lower Center Upper -+---------+---------+---------+
Strat -2.407 -0.591 1.225 (-----------*-----------)

-+---------+---------+---------+
-3.0 -1.5 0.0 1.5

in the Session window. The F test in the ANOVA table with a P -value of 0.329
indicates that the null hypothesis H0 : µ1 = µ2 = µ3 would not be rejected.
Also, the estimate of σ is given by s = 3.014 and 95% conÞdence intervals are
plotted for the individual µi.
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The dialog box of Display 12.2.1 carries out a one-way ANOVA for the data
in C1, with the levels in C2, and puts the ordinary residuals in a variable called
RESI1 and the Þtted values in a variable called FITS1. Note that because we
assume a constant standard deviation and the number of observations is the
same in each group, the ordinary residuals can be used in place of standardized
residuals. Note also that the ith Þtted value in this case is given by the mean
of the group to which the observation belongs.

Display 12.2.1: Dialog box for one-way ANOVA.

The dialog box of Display 12.2.2 is obtained by clicking on the Comparisons
button in the dialog box of Display 12.2.1. We use this dialog box to select a
multiple comparison procedure. Here we have chosen to use the Fisher multiple
comparison method with an individual error rate on the comparisons of 5%.
This gives conÞdence intervals for the differences between the means using

ȳi − ȳj ± s
s
1

ni
+
1

nj
t∗

where s is the pooled standard deviation and t∗ is the 0.975 percentile of the Stu-
dent distribution with the error degrees of freedom. Note that with an individual
95% conÞdence interval, the probability of not covering the true difference (the
individual error rate) is .05 but the probability of at least one of these three not
covering the difference (the family error rate) is 1− .879 = 0.121. If you want
a more conservative family error rate, specify a lower individual error rate. For
example, an individual error rate of 0.02 speciÞes a family error rate of 0.0516 in
this example. We refer the reader to Help for details on the other available mul-
tiple comparison procedures. In the output above, we see that a 95% conÞdence
interval for µ1 − µ2 is given by (−1.043, 2.589), and because this includes 0, we
conclude that there is no evidence against the null hypothesis H0 : µ1 = µ2.
We get the same result for the other two comparisons. Given that the F test
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has already concluded that there is no evidence of any differences among the
means, there is no reason for us to carry out these individual comparisons, and
we do it only for illustration purposes here.

Display 12.2.2: Dialog box for selecting a multiple comparison procedure in a
one-way ANOVA.

The dialog box of Display 12.2.3 is obtained by clicking on the Graphs but-
ton in the dialog box of Display 12.2.1. We have requested a plot of side-by-side
boxplots of the data by level, which results in Display 12.2.4, the normal prob-
ability plot of the residuals that appears in Display 12.2.5 and a plot of the
residuals against the index in C2 that appears in Display 12.2.6. The residual
plots don�t indicate any problems with the model assumptions.

Display 12.2.3: Dialog box for producing plots in a one-way ANOVA.
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Display 12.2.4: Boxplots for the example.

Display 12.2.5: Normal probability plot for the example of this section after Þtting a
one-way ANOVA model.

Display 12.2.6: Plot of residuals against level for the example of this section after
Þtting a one-way ANOVA model.
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A one-way ANOVA can also be carried out using S
¯
tat I A

¯
NOVA I One-way

(U
¯
nstacked) and Þlling in the dialog box appropriately. This command is much

more limited in its features than S
¯
tat I A

¯
NOVA I O

¯
ne-way, however. So if

you have a worksheet with the samples for each level in columns, it would seem
better in general to use the Da

¯
ta I St

¯
ack command to place the data in one

column and then use S
¯
tat I A

¯
NOVA I O

¯
ne-way.

Also available are analysis of means (ANOM) plots via S
¯
tat I A

¯
NOVA I

An
¯
alysis of Means (see Help for details on these) and plots of the means with

error bars (± one standard error of the observations at a level) via S
¯
tat I

A
¯
NOVA I I

¯
nterval Plot. Further, we can plot the means joined by lines using

S
¯
tat I A

¯
NOVA I M

¯
ain Effects plots as in Display 12.2.7. The dotted line is

the grand mean. Power calculations can be carried out using S
¯
tat I P

¯
ower and

Sample Size I O
¯
ne-way ANOVA and Þlling in the dialog box appropriately.

Display 12.2.7: Main effects plot for the example of this section.

The corresponding session command is given by onewayaov and has the
general syntax

onewayaov E1 E2 E3 E4
where E1 is a variable containing the responses, E2 is a variable containing
indices that indicate group membership, E3 is a variable to hold the residuals,
and E4 is a variable to hold the Þtted values. Of course, E3 and E4 can be
dropped if they are not needed. There are various subcommands that can
be used. The gboxplot subcommand produces side-by-side boxplots. The
gnormal subcommand produces a normal probability plot of the residuals. The
gvariables E1 subcommand results in a plot of the residuals against the variable
E1. We could also obtain side-by-side dotplots of the data using the gdotplot
subcommand, a histogram of the residuals using the ghistogram subcommand,
a plot of the residuals against observation order using the gorder subcommand,
and a plot of the residuals against the Þtted values using the gÞts subcommand.
The Þsher V1 subcommand gives conÞdence intervals for the differences between



One-Way Analysis of Variance 169

the means, where V1 is the individual error rate. Also available for multiple
comparisons are the tukey, dunnett, and mcb subcommands. For example,
the commands
MTB > onewayaov c1 c2 c3 c4;
SUBC> gboxplot;
SUBC> gnormal;
SUBC> gvariable c2;
SUBC> fisher.

result in the same output as we produced for the example of this section using
the menu commands. Here the Þts are stored in C4 and the residuals are stored
in C3.
The aovoneway command can be used for a one-way ANOVA when the

data for each level is in a separate column. For example, suppose that the
three samples for the example of this section are in columns C3�C5. Then the
command
MTB > aovoneway c3-c5

produces the same ANOVA table and conÞdence intervals for the means as
onewayaov. Only a limited number of subcommands are available with this
command, however.

12.3 Exercises

1. Generate a sample of 10 from each of the N(µi, σ) distributions for i =
1, . . . , 5, where µ1 = 1, µ2 = 1, µ3 = 1, µ4 = 1, µ5 = 2, and σ = 3.
Carry out a one-way ANOVA and produce a normal probability plot of
the residuals and the residuals against the explanatory variable. Compute
.95 conÞdence intervals for the differences between the means. Compute an
approximate set of .95 simultaneous conÞdence intervals for the differences
between the means.

2. Generate a sample of 10 from each of the N(µi, σi) distributions for i =
1, . . . , 5, where µ1 = 1, µ2 = 1, µ3 = 1, µ4 = 1, µ5 = 2, σ1 = σ2 =
σ3 = σ4 = 3, and σ5 = 8. Carry out a one-way ANOVA and produce
a normal probability plot of the residuals and the residuals against the
explanatory variable. Compare the residual plots with those obtained in
Exercise II.12.1.

3. The F statistic in a one-way ANOVA, when the standard deviation σ
is constant from one level to another, is distributed noncentral F (k1, k2)
with noncentrality λ, where k1 = I − 1, k2 = n1 + · · ·nI − I,

λ =

PI
i=1 ni (µi − µ̄)2

σ2

and µ̄ =
PI
i=1 niµi/

PI
i=1 ni. Using simulation, approximate the power of

the test in Exercise II.12.1 with level .05 and the values of the parameters
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speciÞed and compare your results with exact results obtained from S
¯
tat

I P
¯
ower and Sample Size I O

¯
ne-way ANOVA.



Chapter 13

Two-Way Analysis of
Variance

New Minitab command discussed in this chapter
S
¯
tat I A

¯
NOVA I T

¯
wo-way

This chapter deals with methods for making inferences about the relationship
existing between a single numeric response variable and two categorical explana-
tory variables. The S

¯
tat I A

¯
NOVA I T

¯
wo-way command is used to carry out

a two-way ANOVA.
We write the two-way ANOVA model as xijk = µij+Mijk, where i = 1, . . . , I

and j = 1, . . . , J index the levels of the categorical explanatory variables and k =
1, . . . , nij indexes the individual observations at each treatment (combination
of levels), µij is the mean response at the ith level and the jth level of the Þrst
and second explanatory variable, respectively, and the errors Mijk are a sample
from the N(0, σ) distribution. Based on the observed xijk, we want to make
inferences about the unknown values of the parameters µ11, . . . , µIJ , σ.

13.1 The Two-Way ANOVA Command

We consider a generated example, where I = J = 2, µ11 = µ21 = µ12 = µ22 =
1, σ = 2, and n11 = n21 = n12 = n22 = 5. The Mijk are generated as a sample
from the N(0, 2) distribution, and we put xijk = µij + Mijk for i = 1, . . . , I
and j = 1, . . . , J and k = 1, . . . , nij. Note that the S¯

tat I A
¯
NOVA I T

¯
wo-way

command requires balanced data; i.e., all the nij must be equal. We pretend that
we don�t know the values of the parameters and carry out a two-way analysis
of variance. If the xijk are in C1, the values of i in C2 and the values of j in
C3, the dialog box of Display 13.1.1

171
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Display 13.1.1: Dialog box for producing a two-way analysis of variance.

produces the following output.

Two-way ANOVA: C1 versus C2, C3
Source DF SS MS F P
C2 1 11.8566 11.8566 3.28 0.089
C3 1 0.0737 0.0737 0.02 0.888
Interaction 1 9.9479 9.9479 2.75 0.117
Error 16 57.9188 3.6199
Total 19 79.7970

S = 1.903 R-Sq = 27.42% R-Sq(adj) = 13.81%

Individual 95% CIs For Mean Based on
Pooled StDev

C2 Mean -+---------+---------+---------+--------
1 2.72136 (----------*---------)
2 1.18146 (----------*---------)

-+---------+---------+---------+--------
0.0 1.2 2.4 3.6

Individual 95% CIs For Mean Based on
Pooled StDev

C3 Mean -+---------+---------+---------+--------
1 1.89070 (-----------------*-----------------)
2 2.01212 (-----------------*-----------------)

-+---------+---------+---------+--------
0.70 1.40 2.10 2.80

We see from this that the null hypothesis of no interaction is not rejected (P -
value = .117) and neither is the null hypothesis of no effect due to the C2 factor
(P -value = .089) nor the null hypothesis of no effect due to factor C3 (P -value
= .888) as is appropriate.



Two-Way Analysis of Variance 173

Note that by checking the Display means boxes in the dialog box of Display
13.1.1 we have caused 95% conÞdence intervals to be printed for the response
means at each value of C2 and each value of C3, respectively. These cell means
are relevant only when we decide that there is no interaction, as is the case here,
and we note that all the intervals contain the true value 1 of these means.
We also checked the Store residuals and Store Þts in the dialog boxes of

Display 13.1.1. This results in the (ordinary) residuals being stored in C4 and
the Þtted values (cell means) being stored in C5. If these columns already had
entries the next two available columns would be used instead.
If we want to Þt the model without any interaction, supposing we know this

to be true, we can check the Fit additive model box in the dialog box of Display
13.1.1. This is acceptable only in rare circumstances, however, as it is unlikely
that we will know that this is true.
Various graphs are also available via the Graphs button in the dialog box

of Display 13.1.1. Clicking on this results in the Dialog box shown in Display
13.1.2. Here we have asked for a normal probability plot of the (ordinary)
residuals and a plot of the (ordinary) residuals versus the variables C2 and C3.
Recall that with balance it is acceptable to use the ordinary residuals rather than
the standardized residuals. We haven�t reproduced the corresponding plots here
but, as we might expect, they gave no grounds for suspecting the correctness of
the model.

Display 13.1.2: Dialog box for producing various residual plots obtained via the
Graphs button in the dialog box of Display 13.1.1.

If we conclude that there is an interaction then we must look at the individ-
ual IJ cell means to determine where the interaction occurs. A plot of these
cell means is often useful in this regard. Also available are analysis of means
(ANOM) plots via S

¯
tat I A

¯
NOVA I An

¯
alysis of Means. In addition, we can

plot the marginal means joined by lines using S
¯
tat I A

¯
NOVA I M

¯
ain Effects
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Plot and plot the cell means joined by lines using S
¯
tat I A

¯
NOVA I Inte

¯
raction

Plot using the dialog box of Display 13.1.3 with the output in Display 13.1.4.
Note that while the plot seems to indicate an interaction, this is not con-

Þrmed by the statistical test. Power calculations can be carried out using S
¯
tat

I P
¯
ower and Sample Size I 2-Level F

¯
actorial Design and Þlling in the dialog

box appropriately. Commands are available in Minitab for analyzing unbal-
anced data and for situations where there are more than two factors where
some factors are continuous and some categorical, and so on.

Display 13.1.3: Dialog box for obtaining the interaction plot of Display 13.1.4.

Display 13.1.4: Plot of cell means in two-way ANOVA simulated example.

The corresponding session command for carrying out a two-way ANOVA is
given by twowayaov. For example, the command
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MTB > twowayaov c1 c2 c3 c4 c5;
SUBC> gnormal;
SUBC> gvariable c2 c3;
SUBC> means c2 c3.�

results in the same output as above. The gnormal subcommand results in
a normal probability plot of the residuals being plotted while the gvariables
subcommand results in a plot of the residuals against each of the factors C2
and C3. The ghistogram, gÞts, and gorder subcommands are also available
for a histogram of the residuals, the residuals against the Þtted values, and
the residuals against observation order, respectively. The means subcommand
causes the estimates of marginal means for each level of C2 and C3 to be printed
together with 95% conÞdence intervals. If we want to Þt the model without any
interaction, supposing we know this to be true, then the additive subcommand
is available to do this.

13.2 Exercises

1. Suppose I = J = 2, µ11 = µ21 = 1, µ12 = µ22 = 2, σ = 2, and n11 =
n21 = n12 = n22 = 10. Generate the data for this situation, and carry out
a two-way analysis. Plot the cell means (an interaction effect plot). Do
your conclusions agree with what you know to be true?

2. Suppose I = J = 2, µ11 = µ21 = 1, µ12 = 3, µ22 = 2, σ = 2, and n11 =
n21 = n12 = n22 = 10. Generate the data for this situation, and carry out
a two-way analysis. Plot the cell means (an interaction effect plot). Do
your conclusions agree with what you know to be true?

3. Suppose I = J = 2, µ11 = µ21 = 1, µ12 = µ22 = 2, σ = 2, and n11 =
n21 = n12 = n22 = 10. Generate the data for this situation, and carry
out a two-way analysis. Form 95% conÞdence intervals for the marginal
means. Repeat your analysis using the additive model and compare the
conÞdence intervals. Can you explain your results?
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Bootstrap Methods and
Permutation Tests

This chapter is concerned with computationally intensive inference methods that
are sometimes applicable when methods based on strong assumptions, such as
normality, cannot be used because it is clear that the assumptions are not satis-
Þed. These methods are based on repeated sampling from a column of Þxed data.
Bootstrap sampling requires that we sample this column with replacement, and
permutation tests require that we sample the column without replacement. In
the next sections we describe how to use Minitab to accomplish this.
At this point Minitab does not have built-in commands to implement boot-

strap sampling or permutation tests. For this we need some of the programming
features of Minitab. Actually you will not have to learn how to program as we
will provide the necessary code and explain how to use it in the following sec-
tions. It is a simple matter to modify this code so that different statistics can
be used.
A Minitab program is called a macro and must start with the statement

gmacro and end with the statement endmacro. The Þrst statement after gmacro
gives a name to the program. Comments in a program, put there for explanatory
purposes, start with note.
If the Þle containing the program is called prog.txt and this is stored in

the root directory of a disk drive called c, then the Minitab command

MTB> %c:/prog.txt

will run the program. Any output will either be printed in the Session window (if
you have used a print command) or stored in the Minitab worksheet. Basically,
this is all you need to know to run the programs discussed in this chapter.

177
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14.1 Bootstrap Sampling

Suppose the data in the following table of n = 15 values is stored in C1 and we
wish to calculate the bootstrap distribution of the sample median that we are
using to estimate the mean of the population distribution.

0.2 3.0 2.2 1.0 4.0
0.5 2.3 −1.3 3.1 −1.0
5.8 0.4 1.3 −2.7 −8.6

The sample median for this data is given by 1.00.
The following Minitab code generates 1000 bootstrap samples from the data

in C1, calculates the median of each of these samples, and then calculates the
sample mean and variance of these medians.

gmacro
bootstrapping
base 34256734
note - original sample is stored in c1
note - bootstrap sample is placed in c2 (each one overwritten)
note - medians of bootstrap samples are stored in c3
note - k1 = size of data set (and bootstrap samples)
let k1=15
do k2=1:1000
note - the upper bound for k2 = the number of bootstrap
note - samples generated, here this is 1000 and can be changed
sample 15 c1 c2;
replace.
note - you must replace the following line with the Minitab
note commands for whatever statistic you want to bootstrap
let c3(k2)=median(c2)
enddo
note - k3 equals the mean of the bootstrapped median
let k3=mean(c3)
note - k4 equals the sample variance of the bootstrapped median
let k4=(stdev(c3))**2
print �bootstrap mean� k3 �bootstrap variance� k4
endmacro

To change the number of bootstrap samples we generate we must change the
ninth line. Currently it reads

do k2=1:1000

so that we are generating 1000 bootstrap samples. If we want to generate 10,000
bootstrap samples, then we must change this to

do k2=1:10000
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and of course any other number can be substituted. Be careful though, as the
bigger we choose this number the longer we have to wait for the computations
to be carried out.
The entire bootstrap sample of medians is stored in C3. So we can plot

this in a histogram to get some idea of what the distribution looks like that the
bootstrap procedure is sampling from.
We put the above code in a Þle bootstrap.txt and stored this in the main

directory of the c drive. Then the command

MTB > %c:/bootstrap.txt

runs these commands and produces the output

bootstrap mean
K3 1.06350
bootstrap variance
K4 0.514652

which gives the estimate bootstrap mean and bootstrap variance as 1.06350 and
0.514652, respectively. So the bias is 1.06350−1.00 = 0.0635, which is relatively
small.
Using the G

¯
raph I H

¯
istogram command on the values stored in C3 we

produced the plot in Display 14.1.1. We can see from this that the bootstrap
distribution of the median is not very normal looking.

Display 14.1.1: Histogram of 1000 bootstrap sample medians.

There are a number of built-in Minitab functions, such as median, whose
bootstrap distribution we are often interested in. There are others, however, for
which we must do a bit of programming. For example, we must program the
various trimmed means. If we want an α-trimmed mean, where α ∈ [0, 1] , then
we remove the m smallest observations and the m largest observations from the
sample and calculate the mean of the rest, where m is the closest integer to αn.
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We now provide an example of obtaining the bootstrap distribution of a
25%-trimmed mean of the data given above. Note that in this case, since
(.25)(15) = 3.75, we take m = 4, and this implies that we remove the ob-
servations −8.6,−2.7,−1.3, 3.1, 4.0 and 5.8 from the sample. The .25-trimmed
mean is then given by 1.10. We then used the following code to estimate the
bootstrap distribution of the .25-trimmed mean.

gmacro
bootstrapping
base 34256734
note - original sample is stored in c1
note - bootstrap sample is placed in c2 (each one overwritten)
note - the sorted bootstrap sample is then put in c2
note - 25% trimmed means of bootstrap samples are computed and
note - stored in c3 for more analysis
do k2=1:1000
sample 15 c1 c2;
replace.
sort c2 c2
let k4=0
do k3=4:12
let k4=k4+c2(k3)
enddo
let c3(k2)=k4/9
enddo
let k5=mean(c3)
let k6=(stdev(c3))**2
print �bootstrap mean� k5 �bootstrap variance� k6
endmacro

Note that the code in lines 13-18, namely,

let k4=0
do k3=4:12
let k4=k4+c2(k3)
enddo
let c3(k2)=k4/9
enddo

calculates the .25-trimmed mean for this data and needs to be changed ap-
propriately for other trimmed means and other data sets. Running this pro-
gram we obtained the estimated mean of the bootstrap distribution as 1.06828
and the estimated bootstrap variance as 0.440809. So in this case the bias is
1.06828− 1.10 = −0.03172, which is reasonably small.
Using the G

¯
raph I H

¯
istogram command on the values stored in C3 we

produced the plot in Display 14.1.2. We can see from this that the bootstrap
distribution of the median is much more normal looking.
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Display 14.1.2: Histogram of 1000 bootstrap sample .25-trimmed means.

Ignoring the skewness of the bootstrap distribution, the bootstrap t .95-
conÞdence interval for the population .25 trimmed mean, is then given by

1.10± t.975(14)
√
0.531869 = 1.10∓ (2.14479)√0.440809

= [−0.324, 2.524].

To calculate the bootstrap percentile conÞdence intervals we Þrst sort the
bootstrap distribution values in C3 and Þnd the .025 and the .975 percentiles
of this sample. The commands

MTB > sort c3 c4
MTB > set c5
DATA> 1:1000
DATA> end
MTB > let c5=c5/1000

place the sorted values in C4 and then calculates the proportion of values less
than or equal to each value and places these proportions in C5. We then record
the values in C4 that correspond to .025 and .975 in C5. In this case we obtained
(−0.34444, 2.31111) as the .95-bootstrap percentile conÞdence interval. We note
that this interval is similar to the bootstrap t interval.

14.2 Permutation Tests

As with bootstrapping Minitab does not have built-in commands to carry out
permutation tests. Again, however, it is very easy to program Minitab to im-
plement these tests.
We illustrate how to implement a permutation test using a data set where

we have two samples, one from a treatment and the other from a control. In
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the following table, T stands for Treatment and C for Control.

T T T T C C C C
24 61 59 46 42 33 46 37
43 44 52 43 43 41 10 42
58 67 62 57 55 19 17 55
71 49 54 26 54 60 28
43 53 57 62 20 53 48
49 56 33 37 85 42

We want to test the null hypothesis that the mean of the distribution for the
treatment group is the same as the mean of the distribution for the control
group. Now suppose that we have the values stored in C2 with an index stored
in C1 that indicates whether the value is from the Treatment group or from the
Control group. Then the commands

MTB > unstack c2 c3 c4;
SUBC> subscripts c1.
MTB > let k1=mean(c3)
MTB > let k2=mean(c4)
MTB > let k3=k1-k2
MTB > print k3
Data Display
K3 9.95445

calculate the means of the T group and the C group, the difference of the two
means and then prints this quantity. We obtain 9.95445 as the difference of the
means.
The following commands compute the P -value based on permutation distri-

bution of the difference of means to test the null hypothesis that the means of
the T and C groups are the same against the alternative that the mean of the
T group is greater than the mean of the C group

gmacro
permutation
base 468798
note - index is stored in c1
note - original samples are stored in c2
note - the following commands compute the difference of the
note - means for the original samples
note - and stores this difference in k10
unstack c2 c4 c5;
subscripts c1.
let k2=mean(c4)
let k3=mean(c5)
let k10=k2-k3
note - permuted samples are stored in c3
note - unstacked permuted samples are stored in c4 and c5
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note - the difference in means is stored in c6
note - the value 1 is stored in c7 if difference in means of
note - these samples is greater than k10 and the value 0 is
note - stored there otherwise
do k1=1:1000
sample 44 c2 c3
unstack c3 c4 c5;
subscripts c1.
let k2=mean(c4)
let k3=mean(c5)
let k4=k2-k3
let c6(k1) = k4
let c7(k1) = k4 >= k10
enddo
note - the mean of c7 is the proportion of the differences of
note - means in the permutation distribution that are greater
note - than or equal to the observed difference
let k5=mean(c7)
print k10 k5
endmacro.

The output from the above program is

K10 9.95445
K5 0.0210000

and this tells us that the P -value is .021, and so we can conclude that we have
evidence against the null hypothesis.
Note that the above program stores the sample from the permutation distri-

bution in C6 so we can analyze this further. For example, Display 14.2.1 gives
a histogram of the 1000 differences of means as obtained in the above program.
We see that this is reasonably normal looking.
A two-sided permutation test can be carried out in this case by simply com-

puting the proportion of differences that are greater in absolute value than the
absolute value of the observed difference, which in this case equals |9.95445| =
9.95445. The following commands accomplish this.

do k1=1:1000
sample 44 c2 c3
unstack c3 c4 c5;
subscripts c1.
let k2=mean(c4)
let k3=mean(c5)
let k4=k2-k3
let c6(k1) = k4
let c7(k1) = abs(k4) >= abs(k10)
enddo
let k5=mean(c7)
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Display 14.2.1: Histogram of 1000 differences of means obtained by randomly
permuting the samples.

This produced the output

K5 0.0330000

so the results are signiÞcant when using the two-sided alternative as well.
For the matched pairs permutation test for comparing treatment A to treat-

ment B we randomly assign an individual�s A measurement to A or B, and the B
measurement is assigned the other label. We then compare the observed mean
difference with the distribution of these differences obtained from all possible
random assignments. The following code carries out the two-sided matched pair
permutation test when we have 10 observations with the A measurements stored
in C1 and the B measurements stored in C2.

gmacro
permutationmatched
base 468798
note - first measurement is stored in c1
note - second measurement is stored in c2
note - differences stored in c3
note - k2 = observed mean difference
let c3=c1-c2
let k2=mean(c3)
note - randomly choose which observations in c1 will be
note - labelled A (10 values generated from Bernoulli(.5))
note - whenever a 1 occurs in c4 multiply entry in c3 by 1
note - otherwise multiply by -1, store in c6
note - and put mean difference in k4 and store in c7
do k1=1:1000
random 10 c4;
bernoulli .5.
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let c5=-1+2*c4
let c6=c5*c3
let k3=mean(c6)
let c7(k1) = k3
let c8(k1) = abs(k3) >= abs(k2)
enddo
let k4=mean(c8)
print k2 k4
endmacro

14.3 Exercises

1. Generate a sample of n = 20 from the N(0, 1) distribution. Approximate
the bootstrap distribution of x̄ by generating 1000 bootstrap samples.
Estimate the bias, estimate the bootstrap variance, and plot the 1000
values of the sample mean in a density histogram. Calculate, and compare,
.95 conÞdence intervals for the population mean based on the t distribution
and bootstrap distribution.

2. Generate a sample of n = 20 from the Chi-squared(1) distribution. Ap-
proximate the bootstrap distribution of x̄ by generating 1000 bootstrap
samples. Estimate the bias, estimate the bootstrap variance, and plot the
1000 values of the sample mean in a density histogram. Calculate, and
compare, .95 conÞdence intervals for the population mean based on the t
distribution and bootstrap distribution.

3. Generate a sample of n = 20 from the N(0, 1) distribution. Approximate
the bootstrap distribution of the .1-trimmed mean by generating 1000
bootstrap samples. Estimate the bias, estimate the bootstrap variance,
and plot the 1000 values of the .1-trimmed mean in a density histogram.
Calculate, and compare, .95 conÞdence intervals for the population .1-
trimmed mean based on the t distribution and bootstrap distribution.

4. Generate a sample of n = 20 from the Chi-squared(1) distribution. Ap-
proximate the bootstrap distribution of the .1-trimmed mean by gener-
ating 1000 bootstrap samples. Estimate the bias, estimate the bootstrap
variance, and plot the 1000 values of the .1-trimmed mean in a density
histogram. Calculate, and compare, .95 conÞdence intervals for the popu-
lation .1-trimmed mean based on the t distribution and bootstrap distri-
bution.

5. Generate a sample of 10 from the N(0, 1) distribution and a sample of 15
from the N(2, 1) distribution and carry out a two-sided permutation test
that the difference of means is 0. Compare the P -value obtained with that
obtained from a two-sided t test.
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6. Generate a sample of 10 from the Student(1) distribution and a sample
of 15 from the Student(1) + 2 distribution (generate a sample from the
Student(1) and add 2 to each sample element) and carry out a two-sided
permutation test that the difference of means is 0. Compare the P -value
obtained with that obtained from a two-sided t test.

7. Generate a sample of 10 from the N(0, 1) distribution and a sample of
10 from the N(2, 1) distribution and carry out a two-sided matched pair
permutation test that the difference of means is 0. Compare the P -value
obtained with that obtained from a two-sided matched pair t test.



Chapter 15

Nonparametric Tests

New Minitab commands discussed in this chapter
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¯
onparametrics I K

¯
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¯
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¯
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¯
onparametrics I 1-Sample W

¯
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This chapter deals with inference methods that do not depend upon the as-
sumption of normality. These methods are sometimes called nonparametric or
distribution free methods. Recall that we discussed a distribution-free method
in Section 7.4, where we presented the S

¯
tat I N

¯
onparametrics I 1

¯
-Sample Sign

command for the sign conÞdence interval and sign test for the median. Recall
also the Da

¯
ta I R

¯
ank command in I.10.6, which can be used to compute the

ranks of a data set.

15.1 The Wilcoxon Rank Sum Procedures

The Mann-Whitney test for a difference between the locations of two distribu-
tions is equivalent to the Wilcoxon rank sum test in the following sense. Suppose
that we have two independent samples y11, . . . , y1n1 and y21, . . . , y2n2 from two
distributions that differ at most in their locations as represented by their me-
dians. The Mann-Whitney statistic U is the number of pairs (y1i, y2j) where
y1i > y2j, while the Wilcoxon rank sum test statistic W is the sum of the ranks
from the Þrst sample when the ranks are computed for the two samples consid-
ered as one sample combined. It can be shown that W = U + n1(n1+1)/2 and
so the test procedures based on these statistics are equivalent.
Suppose we have one sample of four values 166.7, 172.2, 165.0, and 176.9

stored in C1 and a second sample of four values 158.6, 176.4, 153.1, and 156.0
stored in C2. The S

¯
tat I N

¯
onparametrics I M

¯
ann-Whitney command, imple-

mented as in the dialog box of Display 15.1.1,
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Display 15.1.1: Dialog box for implementing the Mann-Whitney command.

leads to the output

Mann-Whitney Test and CI: C1, C2
N Median

C1 4 169.45
C2 4 157.30
Point estimate for ETA1-ETA2 is 11.30
93.9 Percent CI for ETA1-ETA2 is (-9.70,20.90)
W = 23.0
Test of ETA1 = ETA2 vs ETA1 > ETA2 is significant at 0.0970

which indicates that the test of H0 : the medians of the two distributions are
identical versus Ha : the median of the Þrst distribution is greater than the
median of the second gives a P -value of .0970. Also, an estimate of 11.3 is
produced for the difference in the medians, and we asked for a 90% conÞdence
interval for this difference by placing 90 in the ConÞdence level box. Note that
exact conÞdences cannot be attained due to the discrete distribution followed
by the statistic U. The Mann-Whitney test requires the assumption that the
two distributions we are sampling from have the same form.
The corresponding session command is given by mann-whitney. For ex-

ample, the command

MTB > mann-whitney 90 c1 c2;
SUBC> alternative 1.

leads to the above output. Note that we have placed 90 on the command line
to indicate that we want a 90% conÞdence interval. If this value is left out, a
default 95% conÞdence interval is computed. Also available are the one-sided
test of H0 : the medians of the two distributions are identical versus Ha :
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the median of the Þrst distribution is smaller than the median of the second,
using the subcommand alternative −1, and the two-sided test is obtained if
no alternative subcommand is employed.

15.2 The Wilcoxon Signed Rank Procedures

The Wilcoxon signed rank test and conÞdence interval are used for inferences
about the median of a distribution. The Wilcoxon procedures are based on
ranks, which is not the case for the sign procedures discussed in Section 7.4.
Suppose we have two measurements on each of Þve individuals. The differences
in these measurements are .37,−.23, .66,−.08,−.17 and they are stored in C1.
The

¯
Stat I N

¯
onparametrics I 1-Sample W

¯
ilcoxon command, implemented as

in the dialog box in Display 15.2.1,

Display 15.2.1: Dialog box for implementing the Wilcoxon signed rank test.

leads to the output

Test of median = 0.000000 versus median > 0.000000
N for Wilcoxon Estimated

N Test Statistic P Median
C1 5 5 9.0 0.394 0.1000

which gives the P -value .394 for testing H0 : the median of the difference is 0
versus Ha : the median of the difference is greater than 0. If instead we had
Þlled in the ConÞdence interval button and placed 90 in the Level box of the
dialog box in Display 15.2.1, we would have obtained the output

Estimated Achieved
N Median Confidence Confidence Interval

C1 5 0.100 89.4 (-0.200, 0.515)
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which provides a 90% conÞdence interval for the median. Note that theWilcoxon
signed rank procedures for the median require an assumption that the response
values (in this case the difference) come from a distribution symmetric about
its median.
The corresponding session commands are given by wtest and winterval

for tests and conÞdence intervals respectively. The general syntax of the wtest
command is

wtest V E1

where V is the hypothesized value of the median, with 0 being the default value,
and E1 is the column containing the data. For example, the command

MTB > wtest c1;
SUBC> alternative 1.

produces the above output for the test. The general syntax of the winterval
command is

winterval V E1

where V is the conÞdence level, with 0.95 being the default value, and E1 is the
column containing the data.

15.3 The Kruskal-Wallis Test

The Kruskal-Wallis test is the analog of the one-way ANOVA in the nonpara-
metric setting. To illustrate, suppose we use the data in the table of section
12.2 where our purpose is to compare three methods of instruction called basal,
DRTA, and strategies. The data comprise scores on a test attained by children
receiving each of the methods of instruction. There are 22 observations in each
group. We carry out a Kruskal-Wallis test, using this data, to determine if there
is any difference between the median performances of students exposed to the
three teaching methods. For this there are I = 3 levels corresponding to the
values Basal, DRTA, and Strat and n1 = n2 = n3 = 22. Suppose that we have
the scores in C1 and the corresponding values of the categorical explanatory
variable in C2, where Basal is indicated by 1, DRTA by 2, and Strat by 3. The
S
¯
tat I N

¯
onparametrics I K

¯
ruskal-Wallis command, as implemented in Display

15.3.1, produces the output

Kruskal-Wallis Test: C1 versus C2
Kruskal-Wallis Test on C1
C2 N Median Ave Rank Z
1 22 11.500 38.1 1.37
2 22 9.000 32.9 -0.19
3 22 8.500 29.6 -1.18
Overall 66 33.5
H = 2.19 DF = 2 P = 0.334
H = 2.22 DF = 2 P = 0.329 (adjusted for ties)
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which gives a P -value of .334 for testing H0 : each sample comes from the
same distribution versus Ha : at least two of the samples come from different
distributions. Note that the validity of the Kruskal-Wallis test relies on the
assumption that the distributions being sampled from all have the same form.

Display 15.3.1: Dialog box for implementing the Kruskal-Wallis test.

The corresponding session command is given by kruskal-wallis. For exam-
ple, the command

MTB > kruskal-wallis c1 c2

also produces the above output. The general syntax of the kruskal-wallis
command is

kruskal-wallis E1 E2

where E1 contains the data and E2 contains the levels of the factor.

15.4 Exercises

1. Generate a sample of n = 10 from the N(0, 1) distribution and compute
the P -value for testing H0 : the median is 0 versus Ha : the median is
not 0, using the t test and the Wilcoxon signed rank test. Compare the
P -values. Repeat this with n = 100.

2. Generate a sample of n = 10 from the N(0, 1) distribution and compute
95% conÞdence intervals for the median, using the t conÞdence interval
and the Wilcoxon signed rank conÞdence intervals. Compare the lengths
of the conÞdence intervals. Repeat this with n = 100.
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3. Generate two samples of n = 10 from the Student(1) distribution and add
1 to the second sample. Test H0 : the medians of the two distributions
are identical versus Ha : the medians are not equal using the two-sample
t test and using the Mann-Whitney test. Compare the results.

4. Generate a sample of 10 from each of the N(1, 2), N(2, 2), and N(3, 1)
distributions. Test for a difference among the distributions using a one-
way ANOVA and using the Kruskal-Wallis test. Compare the results.

5. Generate 10 scores for 10 brands from the N(µij , σ) distributions for i =
1, 2 and j = 1, 2, where µ11 = µ21 = 1 and µ12 = µ22 = 2, and treat
each test for no effect due to brand using a two-way ANOVA with the
assumption of no interaction and also using the Friedman test. Compare
the results.
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Logistic Regression

New Minitab commands discussed in this chapter
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This chapter deals with the logistic regression model. This model arises when
the response variable y is binary�i.e., takes only two values�and we have a
number of explanatory variables x1, . . . , xk.

16.1 The Logistic Regression Model

The regression techniques discussed in Chapters 10 and 11 require that the
response variable y be a continuous variable. In many contexts, however, the
response is discrete and in fact binary, i.e., taking the values 0 and 1. Let p
denote the probability of a 1. This probability is related to the values of the
explanatory variables x1, . . . , xk.
We cannot, however, write this as p = β0 + β1x1 + . . . + βkxk because the

right-hand side is not constrained to lie in the interval [0, 1], which it must if it
is to represent a probability. One solution to this problem is to employ the logit
link function, which is given by

ln

µ
p

1− p
¶
= β0 + β1x1 + · · ·+ βkxk

and this leads to the equations

p

1− p = exp {β0 + β1x1 + · · ·+ βkxk}
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and

p =
exp {β0 + β1x1 + · · ·+ βkxk}

1 + exp {β0 + β1x1 + · · ·+ βkxk}
for the odds p/(1 − p) and probability p, respectively. The right-hand side of
the equation for p is now always between 0 and 1. Note that logistic regres-
sion is based on an ordinary regression relation between the logarithm of the
odds in favor of the event occurring at a particular setting of the explanatory
variables and the values of the explanatory variables x1, . . . , xk. The quantity
ln (p/(1− p)) is referred to as the log odds.
The procedure for estimating the coefficients β0, β1, . . . , βk using this rela-

tion and carrying out tests of signiÞcance on these values is known as logistic
regression. Typically, more sophisticated statistical methods than least squares
are needed for Þtting and inference in this context, and we rely on software such
as Minitab to carry out the necessary computations.
In addition, other link functions are available in Minitab and are often used.

In particular, the probit link function is given by

Φ−1 (p) = β0 + β1x1 + · · ·+ βkxk
where Φ is the cumulative distribution function of the N(0, 1) distribution, and
this leads to the relation

p = Φ (β0 + β1x1 + · · ·+ βkxk)
which is also always between 0 and 1. Choice of the link function can be made
via a variety of goodness-of-Þt tests available in Minitab, but we restrict our
attention here to the logit link function.

16.2 Example
Suppose that we have the following 10 observations in columns C1�C3

Row C1 C2 C3
1 0 -0.65917 0.43450
2 0 0.69408 0.48175
3 1 -0.28772 0.08279
4 1 0.76911 0.59153
5 1 1.44037 2.07466
6 0 0.52674 0.27745
7 1 0.38593 0.14894
8 1 -0.00027 0.00000
9 0 1.15681 1.33822
10 1 0.60793 0.36958

where the response y is in C1, x1 is in C2, and x2 is in C3 and note that x2 = x21.
We want to Þt the model

ln

µ
p

1− p
¶
= β0 + β1x1 + β2x2



Logistic Regression 195

and conduct statistical inference concerning the parameters of the model.
Fitting and inference is carried out in Minitab using S

¯
tat I R

¯
egression I

Binary L
¯
ogistic Regression and Þlling in the dialog box as in Display 16.1.1.

Display 16.1.1: Dialog box for implementing a binary logistic regression.

Here, the Response box contains c1 and the Model box contains C2 and C3.
Clicking on the Results button brings up the dialog box in Display 16.1.2.

Display 16.1.2: The dialog box resulting from clicking on the 16.1.1.

We have Þlled in the radio button Response information, regression table, etc.,
as this controls the amount of output. The default output is more extensive and
we chose to limit this. The following output is obtained:
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Link Function: Logit
Response Information

Variable Value Count
C1 1 6 (Event)

0 4
Total 10

Logistic Regression Table
Odds 95% CI

Predictor Coef StDev Z P Ratio Lower Upper
Constant 0.522799 0.903137 0.58 0.563
C2 0.739955 1.60504 0.46 0.645 2.10 0.09 48.71
C3 -0.779614 1.58437 -0.49 0.623 0.46 0.02 10.23

Log-Likelihood = -6.598
Test that all slopes are zero: G = 0.265, DF = 2,

P-Value = 0.876

This gives estimates of the coefficients and their standard errors and the P -value
for H0 : β0 = 0 versus Ha : β0 6= 0 as 0.563, the P -value for H0 : β1 = 0 versus
Ha : β1 6= 0 as 0.645, and the P -value for H0 : β2 = 0 versus Ha : β2 6= 0 as
0.623. Further, the test of H0 : β1 = β2 = 0 versus Ha : β1 6= 0 or β2 6= 0 has
P -value .876. In this example, there is no evidence of any nonzero coefficients.
Note that p = .5 when β0 = β1 = β2 = 0.
Also provided in the output is the estimate 2.10 for the odds ratio for x1 (C2)

and a 95% conÞdence interval (.09, 48.71) for the true value. The odds ratio for
x1 is given by exp (β1) , which is the ratio of the odds at x1 + 1 to the odds at
x1 when x2 is held Þxed or when β2 = 0. Because there is evidence that β2 = 0
(P -value = .623), the odds ratio has a direct interpretation here. Note, however,
that if this wasn�t the case the odds ratio would not have such an interpretation
as it doesn�t makes sense for x2 to be held Þxed when x1 changes in this example
as they are not independent variables. Similar comments apply to the estimate
0.46 for the odds ratio for x2 (C3) and the 95% conÞdence interval (.02, 10.23)
for the true value of this quantity.
Many other aspects of Þtting logistic regression models are available in

Minitab and we refer the reader to Help for a discussion of these. Also avail-
able in Minitab are ordinal logistic regression, when the response takes more
than two values and these are ordered, and nominal logistic regression, when
the response takes more than two values and these are unordered. These can
be accessed via S

¯
tat I R

¯
egression I Ordinal L

¯
ogistic Regression and S

¯
tat I

R
¯
egression I Nominal L

¯
ogistic Regression, respectively.

16.3 Exercises

1. Generate a sample of 20 from the Bernoulli(.25) distribution. Pretending
that we don�t know p, compute a 95% conÞdence interval for this quantity.



Logistic Regression 197

Using this conÞdence interval, form 95% conÞdence intervals for the odds
and the log odds.

2. Let x take the values −1, −.5, 0, .5, and 1. Plot the log odds

ln

µ
p

1− p
¶
= β0 + β1x

against x when β0 = 1 and β1 = 2. Plot the odds and the probability p
against x.

3. Let x take the values −1, −.5, 0, .5, and 1. At each of these values,
generate a sample of four values from the Bernoulli(px) distribution where

px =
exp{1 + 2x}

1 + exp {1 + 2x}
and let these values be the y response values. Carry out a logistic regres-
sion analysis of this data using the model.

ln

µ
px

1− px

¶
= β0 + β1x

Compute a 95% conÞdence interval for β1 and determine if it contains the
true value. Similarly, form a 95% conÞdence interval for the odds ratio
when x increases by 1 unit and determine if it contains the true value.

4. Let x take the values −1, −.5, 0, .5, and 1. At each of these values,
generate a sample of four values from the Bernoulli(px) distribution where

px =
exp{1 + 2x}

1 + exp {1 + 2x}
and let these values be the y response values. Carry out a logistic regres-
sion analysis of this data using the model

ln

µ
px

1− px

¶
= β0 + β1x+ β2x

2

Test the null hypothesis H0 : β2 = 0 versus Ha : β2 6= 0. Form a 95%
conÞdence interval for the odds ratio for x. Does it make sense to make
an inference about this quantity in this example? Why or why not?

5. Let x take the values −1, −.5, 0, .5, and 1. At each of these values,
generate a sample of four values from the Bernoulli(.5) distribution. Carry
out a logistic regression analysis of this data using the model

ln

µ
px

1− px

¶
= β0 + β1x+ β2x

2

Test the null hypothesis H0 : β1 = β2 = 0 versus Ha : β1 6= 0 or β2 6= 0.
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Statistics for Quality:
Control and Capability

New Minitab commands discussed in this chapter
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Control charts are used to monitor a process to ensure that it is under statistical
control. There is a wide variety of such charts depending on the statistic used
for the monitoring and the test used to detect when a process is out of control.

17.1 Producing x̄ Charts

Suppose we have placed a random sample of 100 from the N(5, 2) distribution
in C1 and we want an x̄ chart of this data. Then the command S

¯
tat I C

¯
ontrol

Charts I Variables Charts for S
¯
ubgroups I X

¯
bar brings up the dialog box

shown in Display 17.1.1. Here we have indicated that the data is in C1 and
that we want the sample averages to be based on 5 observations (so there are
20 means). To control the placement of the LCL and UCL limits we clicked on
Xbar Options ... to bring up the dialog box shown in Display 17.1.2. Here we
asked that the center line be drawn at 5 and the standard deviation be set to 2
so that the LCL is 5− 3(2/√5) = 2.3167 and the UCL is 5+3(2/√5) = 7.6833.
If we do not specify these values, then Minitab will estimate them from

the data using the sample mean for the center line and the average of the
sample standard deviations for the subgroups to determine the LCL and UCL.
In particular, if s̄ denotes the average standard deviation then the LCL equals
x̄−3s̄/c4 and the UCL equals x̄+3s̄/c4, where c4 is the constant deÞned in IPS
that corrects for the bias in s, as an estimator of σ.
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Display 17.1.1: Dialog box to create an x̄ chart.

Display 17.1.2: Dialog box to control placement of center line and limits in an x̄
chart.

Clicking on OK in both of these dialog boxes produces the x̄ chart shown in
Display 17.1.3. As expected, all the sample means lie within the limits.
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Xbar Chart of C1

Display 17.1.3: An x̄ chart for a random sample of 100 from the N(5, 2) distribution.

We observe that the dialog box in Display 17.1.2 contains a tab labelled
Tests. Clicking on this produces the dialog box shown in Display 17.1.4 where
we have indicated that we want two tests to be carried out, namely, 1 point
> K standard deviations from center line with K = 3 and K points in a row
on same side of center line with K = 9. Clearly, the control chart shown in
Display 17.1.3 passes both of these tests. Suppose, however, that we change the
Þrst sample observation to the value 30. Then using the dialog boxes shown
in Displays 17.1.1, 17.1.2 and 17.1.4 produces the x̄ chart shown in Display
17.1.5. Note that the Þrst sample mean fails the Þrst test and this is indicated
on the chart by placing a 1 above that plotted mean. If any points had failed
the second test, this would have been indicated by placing the number 2 above
those plotted means, etc.

Display 17.1.4: Dialog box to choose tests to be performed in an x̄ chart.
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Display 17.1.5: An x̄ chart for a random sample of 100 from the N(5, 2) distribution
where the Þrst observation has been changed to be equal to 30.

The syntax of the corresponding session command xbarchart is

xbarchart E1 E2

where E1 is a column containing the data and E2 is either a constant, indicating
how many observations are used to deÞne a subgroup, or a column of values,
indicating how the elements of E1 are to be grouped for the calculation of the
means. Minitab then produces the center line and control limits based on the
data in E1.When E2 equals 1, σ cannot be estimated using standard deviations
and an alternative estimator is used.
There are various subcommands that can be used with xbarchart. In

particular, we can provide mu and sigma to specify the population mean and
standard deviation. For example, the commands

MTB > xbarchart c1 5;
SUBC> mu 5;
SUBC> sigma 2.

produce the chart shown in Display 17.1.3.
Using the test subcommand, various tests for control can be carried out.

For example,

MTB > xbar c1 5;
SUBC> test 1.

breaks the data into subgroups of size 5 and checks to see if any of the points
are outside the control limits. The subcommand test 2 checks to see if there
are 9 points in a row on the same side of the center line, test 3 checks to see if
there are 6 points in a row all increasing or all decreasing. There are a total of
8 tests like this, all looking for patterns. The subcommand test 1:8 performs
all 8 tests.
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17.2 Producing S Charts

Suppose we have placed a random sample of 100 from the N(5, 2) distribution
in C1 and we want an S chart of this data. Then the command S

¯
tat I C

¯
ontrol

Charts I Variables Charts for S
¯
ubgroups I S

¯
brings up the dialog box shown

in Display 17.2.1. Here we have indicated that the data is in C1 and that we
want the sample standard deviations to be based on 5 observations (so there
are 20 standard deviations). To control the placement of the LCL and UCL
limits we clicked on S Options ... to bring up the dialog box shown in Display
17.2.2. Here we set σ = 2 so that the center line and the LCL and UCL limits
are determined by this. If we don�t specify the value for σ, then this parameter
is estimated from the data.

Display 17.2.1: Dialog box to create an S chart.

Display 17.2.2: Dialog box to control center line and limits in an S chart.
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Clicking on OK in both of these dialog boxes produces the S chart shown in
Display 17.2.3. As expected, all the standard deviations lie within the limits.
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Display 17.2.3: An S chart for a random sample of 100 from the N(5, 2) distribution.

We observe that the dialog box in Display 17.2.2 contains a tab labelled
Tests. As with x̄ charts (Display 17.1.4) we can select several tests to be per-
formed to assess whether or not the process is in control.
The syntax of the corresponding session command schart is

schart E1 E2

where E1 is a column containing the data and E2 is either a constant, indicating
how many observations are used to deÞne a subgroup, or a column of values,
indicating how the elements of E1 are to be grouped for the calculation of
the standard deviations. Minitab then produces the center line and control
limits based on the data in E1.When E2 equals 1, σ cannot be estimated using
standard deviations and an alternative estimator is used. There are various
subcommands that can be used with schart. For example, the commands

MTB > schart c1 5;
SUBC> sigma 2.

produces the control chart of Display 17.2.3.

17.3 Producing p Charts

A p chart is appropriate when a response is coming from a Binomial(n, p) dis-
tribution; for example, the count of the number of defectives in a batch of size
n, and we use the proportion of defectives �p to control the process. Suppose
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we have placed a random sample of 50 from the Binomial(10, .3) distribution
in C1 and we want a p chart of this data. Then the command S

¯
tat I C

¯
ontrol

Charts I A
¯
ttributes Charts I P

¯
brings up the dialog box shown in Display

17.3.1. Here we have indicated that the data is in C1 and that these counts
are based on 10 observations. To control the placement of the LCL and UCL
limits we clicked on P Chart Options to bring up the dialog box shown in Dis-
play 17.3.2. Here we asked that limits be determined by setting p = .3 so that
the center line is at .3, the LCL is max

n
.3− 3p.3(.7)/10, 0o = 0.0, and the

UCL is .3+3
p
.3(.7)/10 = 0.73474. If we don�t specify the value for p then this

parameter is estimated from the data and the center line and limits depend on
the data.

Display 17.3.1: Dialog box to create a p chart.

Display 17.3.2: Dialog box to control center line and limits in a p chart.
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Clicking on OK in these dialog boxes produces the p chart shown in Display
17.3.3. We see from this that the process seems to be in control as we might
expect.
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Display 17.3.3: A p chart for a random sample of 50 from the Binomial(10, .3)
distribution.

The syntax of the corresponding session command pchart is

pchart E1 E2

where E1 is a column containing the data and E2 is a constant, indicating how
many observations the counts are based on. Minitab then produces the center
line and control limits based on the data in E1. There are various subcommands
that can be used with pchart. For example, the commands

MTB > pchart C1 10;
SUBC> P .3.

produce the plot shown in Display 17.3.3.

17.4 Exercises

1. Generate a sample of 100 from a Student(1). Make an x̄ chart for this
data based on subgroups of size 5 with µ = 0 and σ = 1. What tests for
control are failed?

2. For the data in Exercise 1, make an x̄ chart based on subgroups of size 5
using estimates of µ and σ. What tests for control are failed?

3. For the data in Exercise 1, make an S chart based on subgroups of size 5
using σ = 1. What tests for control are failed?

4. For the data in Exercise 1, make an S chart based on subgroups of size 5
using an estimate of σ. What tests for control are failed?
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5. Generate a sample of 100 from a Binomial(15, .1) distribution. Make a p
chart for this data. What tests for control are failed?

6. Generate a sample of 50 from a Binomial(15, .1) distribution followed by
a sample of 50 from a Binomial(15, .8) distribution. Make a p chart for
this data. What tests for control are failed?
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Time Series Forecasting

New Minitab commands discussed in this chapter
G
¯
raph I T

¯
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¯
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¯
tat I Time S

¯
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¯
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tat I Time S

¯
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¯
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S
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tat I Time S

¯
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¯
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18.1 Time Series Plots

Often, data are collected sequentially in time. In such a context, it is instructive
to plot the values of quantitative variables against time in a time series plot.
For this we use the G

¯
raph I T

¯
ime Series Plot command.

Suppose that we obtain the following series of 50 successive daily prices
recorded for a commodity where the time proceeds along rows. These data
values are placed in C1 and are used throughout this chapter.

39 35 39 38 37 38 42 41 41 42
46 47 51 54 54 53 57 49 46 43
51 43 51 45 34 36 36 37 34 32
28 31 28 27 29 28 20 18 22 23
29 29 30 25 21 27 28 29 33 34

The G
¯
raph I T

¯
ime Series Plot command brings up the dialog box shown in

Display 18.1.1. Clicking on Simple and OK brings up the dialog box shown
in Display 18.1.21 where we have asked for a time series plot of the variable
C1. This produces the time plot shown in Display 18.1.3 where price is plotted
against day. There are various options available to modify the presentation of
this graph.
There is also a corresponding session command tsplot. We refer the reader

to help for more discussion of this.
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Display 18.1.1: First dialog box for producing a time series plot.

Display 18.1.2: Dialog box for a time series plot of the variable C1.

Display 18.1.3: Time series plot of the variable C1.
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18.2 Trend Analysis

The command S
¯
tat I Time S

¯
eries I Tren

¯
d Analysis can be used to Þt curves to

a time series to determine the trend. This command brings up the dialog box in
Display 18.2.1, where we have asked for a linear trend analysis for the variable
C1. Clicking on the Storage button brings up the dialog box in Display 18.2.2
where we have asked for the residuals to be stored. These choices produce the
output

Trend Analysis for C1
Data C1
Length 50
NMissing 0
Fitted Trend Equation
Yt = 48.17 - 0.452245*t

in the session window and the plot in Display 18.2.3. Also the residuals are
stored in the variable RESI1. The Þtted line is given by yt = 48.17− 0.452245t,
which indicates a trend of decreasing prices with time.

Display 18.2.1: Dialog box for a trend analysis of the variable C1.

Display 18.2.2: Dialog box for selected items to be stored in a trend analysis.
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Display 18.2.3: Plot of Þtted linear trend and the time series C1.

Note that the residuals can be plotted in a time series plot to check for
autocorrelation and, in this case, indicates a clear autocorrelation. Also, we can
use the S

¯
tat I Time S

¯
eries I L

¯
ag command to place the lagged residuals in

another column and then graph the residuals against the lagged residuals in a
scatterplot as another check for autocorrelation.
There is also a corresponding session command trend. We refer the reader

to help for more discussion of this command.

18.3 Seasonality

Suppose that the data represents 10 weeks of 5 successive trading days and we
want to see if there is any evidence of a weekly pattern to the pricing of this
commodity. The command S

¯
tat I Time S

¯
eries I De

¯
composition brings up the

dialog box of Display 18.3.1. We have selected to Þt an additive model, trend
plus seasonality, as opposed to a multiplicative model, trend times seasonality,
by Þlling in Additive under Model Type and putting 5 in the Seasonal length
box. Clicking on OK produces the output

Time Series Decomposition for C1
Additive Model
Data C1
Length 50
NMissing 0
Fitted Trend Equation
Yt = 48.20 - 0.453397*t
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Seasonal Indices
Period Index

1 -1.26
2 0.54
3 1.04
4 0.14
5 -0.46

in the session window. This gives the trend equation yt = 48.20 − 0.453397t
and the estimates of the seasonal effects. So the Þtted value on day 32 is
48.20 − (0.453397)13 + 1.04 = 43.346. Note that we could also have generated
forecasts by clicking in the Generate forecasts box and entering a number in the
Number of forecasts box. Further, various plots are provided. In Display 18.3.2
we have a plot of the original data, the trend line, and the trend plus seasonal
curve. From this we can see that there is little if any beneÞt of including the
seasonal term and so we have evidence against such a seasonal effect existing.
Note that we can also Þt a multiplicative model by Þlling in the Multiplicative

button under Model Type in the dialog box of Display 18.3.1. There are also a
number of options for storing various quantities, plots of residuals, etc.
There is also a corresponding session command decomposition. For exam-

ple the command

MTB > decomposition c1 5

Þts the multiplicative model with seasonal length 5. We refer the reader to help
for more discussion of this command.

Display 18.3.1: Dialog box for Þtting an additive trend and seasonality model.
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Display 18.3.2: Plot of additive trend and seasonality model for data in C1.

Display 18.3.3: Plot of original data, detrended data, seasonally adjusted data, and
seasonally adjusted and detrended data for additive trend and seasonality model for
data in C1.

18.4 Autoregressive Model

To Þt the Þrst-order autoregressive model yt = β0+β1yt−1+Mt we use the S¯
tat I

Time
¯
Series I AR

¯
IMA command with the dialog box as in Display 18.4.1. We

have requested that an AR(1) model be Þtted by placing a 1 in the Nonseasonal
Autoregressive box and 0�s in the Difference and Moving Average boxes. This
produced the output
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ARIMA Model: C1
Estimates at each iteration
Iteration SSE Parameters

0 4014.85 0.100 33.066
1 2940.25 0.250 27.543
2 2083.17 0.400 22.021
3 1443.62 0.550 16.501
4 1021.58 0.700 10.984
5 817.04 0.850 5.475
6 796.02 0.912 3.188
7 795.94 0.916 3.067
8 795.94 0.916 3.059

Relative change in each estimate less than 0.0010

Final Estimates of Parameters
Type Coef SE Coef T P

AR 1 0.9161 0.0585 15.66 0.000
Constant 3.0591 0.5759 5.31 0.000
Mean 36.443 6.860
Number of observations: 50

in the session window together with some additional output connected with
testing various hypotheses concerning the model. The Þrst table shows the
results of the iterative Þtting algorithm for computing the estimates of β0 and
β1, which leads to the Þnal estimates �yt = 3.0591+0.916�yt−1. If we click on the
Storage button, in the dialog box of Display 18.4.1, then we see that we can
store the Þtted values; plotting the Þtted values and the original series on the
same plot show that this model gives a reasonable Þt.

Display 18.4.1: Dialog box for Þtting an AR(1) model to the data in C1..
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If we wish to obtain Forecasts based on the Þtted model, then we click on
the Forecasts button and Þll in the dialog box as in Display 18.4.2 and put the
number of forecasts in the Lead box. We have asked for 12 forecasts for trading
days 51 through 62. These forecasts are printed in the session window.

Display 18.4.2: Dialog box for selecting the number of forecasts when Þtting an
AR(1) model. .

18.5 Moving Averages

To Þt a moving average to the series we use the command S
¯
tat I Time S

¯
eries I

M
¯
oving Average with the dialog box as in Display 18.5.1. Here we have asked

to compute a series of moving averages based on an average of 5 values. This
produces the graph in Display 18.5.2 where the original series and the Þtted
values (moving average of immediately preceding values) are plotted.
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Display 18.5.1: Dialog box for Þtting a moving average of span 5 to the data in C1.

Display 18.5.2: Plot of series and moving average of span 3 for data in C1..

18.6 Exponential Smoothing

For exponential smoothing we use the S
¯
tatITime

¯
SeriesI S

¯
ingle Exp Smooth-

ing command and the dialog box as in Display 18.6.1 where we have selected
the weight w = .2 for the smoothing. Clicking on the Options button brings up
the dialog box in Display 18.6.2 where we have requested that the initial value
be y1. If we set k equal to a larger integer we will take the initial value to the
average of the Þrst k observations.
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Display 18.6.1: Dialog box for exponential smoothing the data in C1 with w = .2.

Display 18.6.2: Dialog box to set initial value for exponential smoothing.

Display 18.6.3: Plot of original series and exponentially smoothed series, with
w = .2, for the data in C1. .



Time Series Forecasting 219

18.7 Exercises

1. For the data in section 18.1, produce a time series plot of the residuals
obtained from a linear trend analysis and comment on the existence of
autocorrelation.

2. For the data in section 18.1, produce a scatterplot of successive residuals
obtained from a linear trend analysis and comment on the existence of
autocorrelation.

3. For the data in section 18.1, Þt a multiplicative model for trend and sea-
sonality. Compare the results with the Þt of an additive model.

4. For the data in section 18.1, plot the Þtted values for an AR(1) model
together with the original series in a time series plot. Comment on how
well the model Þts the series.

5. For the data in section 18.1, plot moving average series of spans 5 and 7
and compare these to the plot in Display 18.5.2. Obtain a forecast for the
next trading day.

6. For the data in section 18.1, plot the exponentially smoothed series for
w = .01, .4, .6, .8., .9, and .99. What do you observe about the smoothed
series?
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Projects

The basic structural component of Minitab is the worksheet. When working
on a project, it may make sense to have your data in several worksheets so
that similar variables are grouped together. Also, you may wish to save plots
associated with the worksheets so that everything can be obtained via a sin-
gle reference. Worksheets and graphs can be grouped together into projects.
Projects are given names and are stored in a Þle with the supplied name and
the Þle extension .mpj.
To open a new project use F

¯
ile I N

¯
ew and choose Minitab Project and click

OK. If you want to open a previously saved project, use F
¯
ile I O

¯
pen Project

and choose the relevant project from the list. To save a project use F
¯
ile I S

¯
ave

Project if the project already has a name (or you wish to use the default of
minitab) or F

¯
ile I Save Project A

¯
s if you wish to give the project a name. Not

only are the contents of all worksheets and graphs saved, but the contents of the
History folder in the Project window are saved as well and are available when the
project is reopened. You can also supply a description of the project using F

¯
ile

I Pr
¯
oject Description and Þlling in the dialog box. Note that a description of

a worksheet can also be saved using Ed
¯
itor IWork

¯
sheet I Description. When

you attempt to open a new project or exit Minitab, you will be asked if you
wish to save the contents of the current project.
Now suppose that in the project evans we have a single worksheet containing

100 numeric values in each of C1 and C2 and have produced a scatterplot of C2
against C1. We open a new worksheet using F

¯
ile I N

¯
ew and choose Minitab

Worksheet and click OK. There are now two worksheets associated with the
project called Worksheet1 and Worksheet2. Suppose that we also place 100
numeric values in C1 and C2 in Worksheet 2 and again plot C2 against C1.
We then have two plots associated with the project evans called Worksheet 1:
Plot C2*C1 and Worksheet 2: Plot C2*C1. These will all appear as individual
windows on your screen, perhaps with some hidden, and any one in particular
can be made active by clicking in that window or by clicking on the relevant
entry in the list obtained when you use W

¯
indow. You can also save individual

worksheets in the project to Þles outside the project when a particular worksheet
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is active using F
¯
ile I Save

¯
Current Worksheet As. Similarly, when a graph

window is active, a graph in the project can be saved to a Þle outside the
project using F

¯
ile I Sav

¯
e Graph As.

With multiple worksheets in a project, it is easy to move data between
worksheets using cut, copy, and paste operations. For example, suppose that
we want to copy C1 and C2 of Worksheet 1 into C3 and C4 of Worksheet 2.
With Worksheet 1 active, highlight the entries in C1 and C2, use E

¯
dit I C

¯
opy

Cells, make Worksheet 2 active, click in the Þrst cell of C3, and use E
¯
dit I

P
¯
aste Cells.
It is possible to see what a project contains without opening it. To do

this use F
¯
ile I O

¯
pen Project, click on the project to be previewed, and click

on the Preview button. Similarly, worksheets can be previewed using F
¯
ile I

O
¯
pen Worksheet, clicking on the worksheet to be previewed, and clicking on

the Preview button.
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Functions in Minitab

B.1 Mathematical Functions
Here is a list and description of some of the mathematical and statistical func-
tions available in Minitab. All of these functions operate on each element of
a column and return a column of the same length. Let (x1, . . . , xn) denote a
column of length n. These functions can be applied only to numerical variables.

abs - Computes the absolute value, (|x1| , . . . , |xn|) .
antilog - Computes the inverse of the base 10 logarithm, (10x1 , . . . , 10xn) .
acos - Computes the inverse cosine function, (arccos (x1) , . . . , arccos (xn)) .
asin - Computes the inverse sine function, (arcsin (x1) , . . . , arcsin (xn)) .
atan - Computes the inverse tangent function, (arctan (x1) , . . . , arctan (xn)) .
cos - Computes the cosine function when angle is given in radians,
(cos (x1) , . . . , cos (xn)) .

ceiling - Computes the smallest integer bigger than a number,
(dx1e , . . . , dxne) .

degrees - Computes the degree measurement of an angle given in radians.
exp - Computes the exponential function, (ex1 , . . . exn) .
ßoor - Computes the greatest integer smaller than a number,
(bx1c , . . . , bxnc).

gamma - Computes the gamma function, (Γ (x1) , . . . ,Γ (xn)) ; note that for
nonnegative integer x, Γ (x+ 1) = x!.

lag - Computes the column (∗, x1, . . . , xn−1) .
ln - Computes the natural logarithm function, (ln (x1) , . . . , ln (xn)) .
lngamma - Computes the log-gamma function, (lnΓ (x1) , . . . , lnΓ (xn)) ; note
that for nonnegative integer x, lnΓ (x+ 1) =

Px
i=1 ln (i).

logten - Computes the base 10 logarithm function, (log10 (x1) , . . . , log10 (xn)) .
nscore - Computes the normal scores function; see help.
parproducts - Computes the column of partial products,
(x1, x1x2, . . . , x1 · · · · · xn) .
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parsums - Computes the column of partial sums,
(x1, x1 + x2, . . . , x1 + · · ·xn) .

radians - Computes the radian measurement of an angle given in degrees.
rank - Computes the ranks of the column entries, (r1, . . . rn) .
round - Computes the nearest integer function i(x) with rounding up at .5,
(i(x1), . . . , i(xn)) ; see help for more details on this function.

signs - Computes the sign function

s(x) =

 −1 if x < 0
0 if x = 0
1 if x > 0

(s(x1), . . . , s(xn)) .
sin - Computes the sine function when the angle is given in radians,
(sin (x1) , . . . , sin (xn)) .

sort - Computes the column consisting of the sorted (ascending) column entries,¡
x(1), . . . , x(n)

¢
.

sqrt - Computes the square root function,
¡√
x1, . . . ,

√
xn
¢
.

tan - Computes the tangent function when the angle is given in radians,
(tan (x1) , . . . , tan (xn)) .

B.2 Column Statistics

Let (x1, . . . , xn) denote a column of length n. Output is written on the screen
or in the Session window and can be assigned to a constant. The general syntax
for column statistic commands is

column statistic name(E1)
where the operation is carried out on the entries in column E1 and output is
written to the screen unless it is assigned to a constant using the let command.
max - Computes the maximum of a column, x(n).
mean - Computes the mean of a column, x̄ = (x1 + · · ·xn) /n.
median - Computes the median of a column (see Chapter 1).
min - Computes the minimum of a column, x(1).
n - Computes the number of nonmissing values in the column.
nmiss - Computes the number of missing values in the column.
range - Computes the difference between the smallest and largest value in a
column,
x(n) − x(1).

ssq - Computes the sum of squares of a column, x21 + · · ·+ x2n.
stdev - Computes the standard deviation of a column,

s =

r
1

n− 1
h
(x1 − x̄)2 + · · ·+ (xn − x̄)2

i
.

sum - Computes the sum of the column entries, x1 + · · ·xn.
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B.3 Row Statistics

Let (x1, . . . , xn) denote a row of length n. The general syntax is

row statistic name E1 . . .Em Em+1
where the operations are carried out on the rows in columns E1, . . ., Em and the
output is placed in column Em+1.

rmax - Computes the maximum of a row, x(n).
rmean - Computes the mean of a row, x̄ = (x1 + · · ·xn) /n.
rmiss - Computes the number of missing values in the row.
rn - Computes the number of nonmissing values in the row.
rrange - Computes the difference between the smallest and largest value in a
row,
x(n) − x(1).

rssq - Computes the sum of squares of a row, x21 + · · ·+ x2n.
rstdev - Computes the standard deviation of a row,

s =

r
1

n− 1
h
(x1 − x̄)2 + · · ·+ (xn − x̄)2

i
.

rsum - Computes the sum of the row entries, x1 + · · ·xn.
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More Minitab Commands

In this section, we discuss some commands that can be very helpful in certain
applications. We will make reference to these commands at appropriate places
throughout the manual. It is probably best to wait to read these descriptions
until such a context arises.

C.1 Coding

The Da
¯
ta I Co

¯
de command is used to recode columns. By this we mean that

data entries in columns are replaced by new values according to a coding scheme
that we must specify. You can recode numeric into numeric, numeric into text,
text into numeric, or text into text by choosing an appropriate subcommand.
For example, suppose in the marks worksheet (Display I.4) we want to recode
the grades in C2, C3, and C4 so that any mark in the range 0�39 becomes
an F, every mark in the range 40�49 becomes an E, every mark in the range
50�59 becomes a D, every mark in the range 60�69 becomes a C, every mark in
the range 70�79 becomes a B, every mark in the range 80�100 becomes an A,
and the results are placed in columns C6, C7, and C8, respectively. Then the
command Da

¯
ta I Co

¯
de I Nu

¯
meric to Text brings up the dialog box shown in

Display C.1.1. The ranges for the numeric values to be recoded to a common
text value are typed in the Original values box, and the new values are typed
in the New box. Note that we have used a shorthand for describing a range of
data values. Because the sixth entry of C4 is *�i.e., it is missing�this value
is simply recoded as a blank. You can also recode missing values by including
* in one of the Original values boxes. If a value in a column is not covered by
one of the values in the Original values boxes, then it is simply left the same in
the new column.

227
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Display C.1.1: Dialog box for recoding numeric values to text values.

Note that this menu command restricts the number of new code values to 8.
The session command code allows up to 50 new codes. For example, suppose
in the marks worksheet we want to recode the grades in C2, C3, and C4 so that
any mark in the range 0�9 becomes a 0, every mark in the range 10�19 becomes
10, etc., and the results are placed in columns C6, C7, and C8. The following
command

MTB >code(0:9) to 0 (10:19) to 10 (20:29) to 20 (30:39) to 30 &
CONT>(40:49) to 40 (50:59) to 50 (60:69) to 60 (70:79) to 70 &
CONT>(80:89) to 80 (90:99) to 90 for C2-C4 put in C6-C8

accomplishes this. Note the use of the continuation symbol &, as this is a long
command. The general syntax for the code command is

code (V1) to code1 ... (Vn) to coden for E1 ... Em put in Em+1 ... E2m

where Vi denotes a set of possible values and ranges for the values in columns
E1 ... Em that are all coded as the number codei, and the results of this coding
are placed in the columns Em+1 ... E2m; i.e., the recoded E1 is placed in Em+1,
etc.

C.2 Concatenating Columns

The Da
¯
ta I Con

¯
catenate command combines two or more text columns into a

single text column. For example, if C6 contains m, m, m, f, f, reading Þrst to
last entry, and C7 contains to, ta, ti, to, ta, then the entries in the Da

¯
ta I

Con
¯
catenate dialog box shown in Display C.2.1 result in a new text column C8

containing the entries mto, mta, mti, fto, fta.
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Display C.2.1: Dialog box for concatenating text columns.

In the session environment, the concatenate command is available for this
operation. The general syntax of the concatenate command is

concatenate E1 ... Em in Em+1

where E1, ..., Em, are text columns, and Em+1 is the target text column.

C.3 Converting Data Types

The Da
¯
ta I Co

¯
de I Us

¯
e Conversion Table command is used to change text

data into numeric data and vice versa. As dealing with text data is a bit more
difficult in Minitab, we recommend either converting text data to numeric before
input or using this command after input to do this.
For example, in the worksheet marks (Display I.4) suppose we want to change

the gender variable from text, with male and female denoted by m and f, respec-
tively, to a numerical variable with male denoted by 0 and female by 1. To do
this, we must Þrst set up a conversion table. The conversion table comprises two
columns in the worksheet, where one column is text and contains the text values
used in the text column, and the second column is numeric and contains the
numerical values that you want these changed into. For example, suppose we
have entered columns C6 and C7 in the marks worksheet, as shown in Display
C.3.1. The Da

¯
ta I Co

¯
de I Us

¯
e Conversion Table command produces the dialog

box shown in Display C.3.2, where we have indicated that we want to convert
the text column C5 into a numeric column and that each m should become a 0
and each f should become a 1.
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Display C.3.1: Columns C6 and C7 in the marks worksheet as a conversion table.

Display C.3.2: Dialog box for converting text column C5 of the marks worksheet into
a numeric column with the conversion table given in columns C6 and C7.

The general syntax for the corresponding session command convert is
convert E1 E2 E3 E4

where E1, E2 are the columns containing the conversion table, E3 is the column
to be converted, and E4 is the column containing the converted column.

C.4 History

Minitab keeps a record of the commands you have used and the data you have
input in a session. This information can be obtained in the History folder
available via the Project Manager Toolbar as in Display C.4.1, and which is
available on the taskbar at the top of the Minitab window. Placing the cursor
over each icon in this toolbar indicates that the Fourth icon corresponds to the
Show History folder.
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Display C.4.1. Project Manager Toolbar.

The commands can be copied from wherever they are listed and pasted into
the Session window to be executed again, so that a number of commands can
be executed at once without retyping. These commands can be edited before
being executed again. This is very helpful when you have implemented a long
sequence of commands and realize that you made an error early on. Note that
even if you use the menu commands, a record is kept only of the corresponding
session commands.
The journal command is available in the Session window if you want to

keep a record of the commands in an external Þle. For example, entering

MTB >journal �comm1�
Collecting keyboard input(commands and data)in file:

comm1.MTJ
MTB >read c1 c2 c3
DATA>1 2 3
DATA>end
1 rows read.
MTB >nojournal

puts

read c1 c2 c3
1 2 3
end
nojournal

into the Þle comm1.mtj. The history is turned off as soon as the nojournal
command is typed.

C.5 Stacking and Unstacking Columns

The Da
¯
ta I St

¯
ack command is used to literally stack columns one on top of

the other. For example, in the marks worksheet (Display I.4) the Da
¯
ta I St

¯
ack

I S
¯
tack Columns command brings up the dialog box shown in Display C.5.1,

which has been Þlled in to stack columns C2, C3, and C4 into C6 with the
values in C2 Þrst, followed by the values in C3 and then the values in C4. In
C7, we have stored an index which indicates the column each value in C6 came
from with a 1 every time a value came from C2, a 2 every time a value came
from C3, and a 3 every time a value came from C4. It is not necessary to create
such an index. Note if we check the Use variable names in subscript box, then
instead of 1 in column C7 the text value C2 will appear, instead of 2 the text
value C2 will appear, etc.
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Display C.5.1: Dialog box for stacking columns.

To unstack values in a column by the values in an index column we use
the Da

¯
ta I U

¯
nstack command. For example, given the columns C6 and C7 of

the marks worksheet as described above, the dialog box shown in Display C.5.2
unstacks C6 into three columns by the values in C7. The three columns are
C8, C9, and C10. Note that they are identical to columns C2, C3, and C4,
respectively. We must always specify a column containing the subscripts when
unstacking a column.

Display C.5.2: Dialog box for unstacking columns.

In the Session window, the same results can be obtained using the stack
and unstack commands. The general syntax for the stack command is given
by



stack E1E2 . . .Em into Em+1
where E1, E2, ..., Em denote the columns or constants to be stacked one on top
of the other, starting with E1, and with the result placed in column Em+1. If we
want to keep an index of where the values came from, then use the subcommand

subscripts Em+2
which results in index values being stored in column Em+2. The general syntax
for the corresponding session command unstack is
unstack E1 into E2 . . .Em;
subscripts Em+1.

where E1 is the column to be unstacked, E2, ..., Em are the columns and con-
stants to contain the unstacked column, and Em+1 gives the subscripts 1, 2,
... that indicate how E1 is to be unstacked. Note that it is also possible to
simultaneously unstack blocks of columns. We refer the reader to help or H

¯
elp

for information on this.
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abort, 12
abs, 223
acos, 223
additive, 175
adjacent values, 51
alternative, 104
and, 29
antilog, 223
aovoneway, 169
areas, 65
arithmetic, 26
asin, 223
atan, 223

bernoulli, 77
binomial distribution, 92
bootstrap distribution, 178
bootstrap percentile conÞdence in-

terval, 181
bootstrap t conÞdence interval, 181
boxplot, 51, 52
brief, 156
by, 32

case, 8
cdf, 57
ceiling, 223
cell�s standardized residual, 135
chi-square distribution, 108
chi-square test, 134
chisquare, 108, 136
climits, 148
code, 228
coefficients, 147
colpercents, 133
column statistics, 30, 224
command line editor, 12

commands, 9
comparison operators, 28
concatenate, 229
conÞdence, 148
connection lines, 65
constant, 147
constants, 9
continuation symbol, 11
control charts, 199
conversion table, 229
convert, 230
copy, 23
copying cells, 22
copying columns, 22
correlate, 66
cos, 223
count, 40
coverage probability, 106
cumcnts, 42
cumpcts, 42
cumulative, 50
cumulative distribution, 40
cutpoints, 49
cutpoints, 50
cutting cells, 22

data, 163
data direction arrow, 12
data entry

direct data entry, 12
importing data, 13

Data window, 4, 12
date data, 7
decomposition, 213
degrees, 223
delete, 23
deleting rows, 22
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density, 50
density curve of the N(µ, σ), 55
density histogram, 46
depths, 46
describe, 44
dialog box or window, 9
distribution free, 115, 187
dunnett, 169

empirical distribution function, 40,
42

eq, 29
erase, 23
erasing variables, 23
error variable, 141
exit, 5
exiting Minitab, 5
explanatory variable, 141
exp, 223

F, 119
F distribution, 119
family error rate, 165
Þle extensions, 6

.mtw, 6
Þsher, 168
Þts, 147
Þtted value, 142
ßoor, 223
formatted input, 14
frequency, 40
frequency, 50
frequency histogram, 46

gamma, 223
gboxplot, 168
gdotplot, 168
ge, 29
geometric distribution, 98
gÞts, 147, 168, 175
ghistogram, 147, 168, 175
gnormal, 147, 168
gorder, 148, 168, 175
Graph window, 45
gt, 29
gvariable, 148

gvariables, 168, 175

H
¯
elp, 7
help, 7
histogram, 50

individual error rate, 165
info, 20
inner fences, 51
inserting cells in a worksheet, 21
inserting columns in a worksheet, 21
inserting rows in a worksheet, 21
interquartile range, 51
invcdf, 57

journal, 231

kruskal-wallis, 191
Kruskal-Wallis test, 190

lag, 223
le, 29
leaf unit, 46
leaves, 46
let, 19
log odds, 194
lngamma, 223
ln, 223
logical operators, 28
logistic regression, 193
logit link function, 193
logten, 223
lower hinge, 51
lower limit, 51
lt, 29

macro, 177
mann-whitney, 188
Mann-Whitney statistic, 187
matched pairs permutation test, 184
mathematical functions, 28
max, 224
maximums, 163
mcb, 169
mean, 224
means, 163, 175
median, 224
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medians, 163
menu bar, 4
menu commands, 3, 9
midpoints, 50
min, 224
minimums, 163
missing, 133
missing values, 13
model checking, 141
mse, 148
mu, 57

n, 163, 224
name, 20
names for variables and constants,

20
ne, 29
nintervals, 50
nmiss, 163, 224
noall, 133
noconstant, 147
nominal logistic regression, 196
noncentral chi-square, 121
noncentral F , 121
nonparametric, 115, 187
nopvalues, 66
normal, 78
normal, 57
normal probability plot, 58
not, 29
nscore, 223
nscores, 58
numeric data, 7
numeric variable, 8

observation, 8
odds, 194
onewayaov, 168
or, 29
ordinal logistic regression, 196
outer fences, 51

p chart, 205
parproducts, 223
parsums, 224
pasting cells, 22

patterned data, 16
pchart, 206
pdf, 56
percent, 50
percents, 42
permutation test, 181
pÞts, 148
pie chart, 55
plimits, 148
plot, 66
pooled, 119
population distribution, 76
power, 106
predict, 148
predictor variable, 141
printing data in the Session window,

18
probit link function, 194
project, 9
Project Manager Toolbar, 230
Project Manager window, 21
projection lines, 65
projects, 221
proportion, 40
proportion, 163
psdÞts, 148
N(µ, σ) distribution function, 55, 57
pth percentile, 55
inverseN(µ, σ) distribution function,

55, 57

radians, 224
random, 77
random permutations, 75
range, 224
rank, 224
ranks, 33
read, 16
regress, 70
relative frequency, 40
relative frequency histogram, 46
repeated sampling, 76
replace, 75
residual, 142
residuals, 148
response variable, 141
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restart, 23
retrieve, 26
rmax, 225
rmean, 225
rmiss, 225
rn, 225
round, 224
row statistics, 30, 225
rowpercents, 133
rrange, 225
rssq, 225
rstdev, 225
rsum, 225
rtype, 148

S chart, 203
sample, 75
sample with replacement, 75
save, 26
scatterplot, 63
schart, 204
sequential analysis of variance, 154
session command, 4
session commands, 11
session subcommand, 4
Session window, 4
set, 17
sigma, 57
sign conÞdence interval, 116
sign test, 115
signs, 224
sin, 224
sinterval, 116
sort, 33, 224
sorting, 32
sqrt, 224
sresiduals, 148
ssq, 224
stack, 232
standard error of the estimate, 86
standardized residual, 143
stats, 163
stdev, 163, 224
stemplots, 45
stems, 46
stest, 116

store, 42
student, 111
Student distribution, 111
subcommands, 11
sum, 224
sums, 163

t conÞdence interval, 112
t test, 113
table, 133, 136
tally, 42
tan, 224
taskbar, 6, 21
text data, 7
text variable, 8
tinterval, 112
toolbar, 12
totpercents, 133
trend, 212
tsplot, 209
ttest, 114
tukey, 169
two-sample t conÞdence interval, 117
two-sample t test, 117
two-sample z conÞdence interval, 116
two-sample z test, 116
twosample, 118
twowayaov, 174

undoing cutting or pasting, 22
uniform, 85
upper hinge, 51
upper limit, 51

Version 15, 3

Weibull distribution, 99
whiskers, 51
Wilcoxon rank sum statistic, 187
Wilcoxon signed rank statistic, 189
Wilson estimate, 125
winterval, 190
worksheet, 7
wtest, 190

x̄ chart, 199
xbarchart, 202
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z conÞdence interval, 101
z test, 102
zinterval, 102
ztest, 104



Chapter 1 Exercises 
 
1.7  Refer to the first exam scores from Exercise 1.5 (reproduced below) and this 
histogram you produced in Exercise 1.6.  Now make a histogram for these data using 
classes 40 – 59, 60 – 79, and 80 – 100.  Compare this histogram with the one that you 
produced in Exercise 1.6. 
 

80 73 92 85 75 98 93 55 80 90 92 80 87 90 72 
65 70 85 83 60 70 90 75 75 58 68 85 78 80 93 

 
 
1.19   Email spam is the curse of the Internet.  Here is a compilation of the most common 
types of spam: 

Type of spam Percent
Adult 14.5
Financial 16.2
Health 7.3
Leisure 7.8
Products 21.0
Scams 14.2

 
Make two bar graphs of these percents, one with bars ordered as in the table 
(alphabetical, and the other with bars in order from tallest to shortest.  Comparisons are 
easier if you order the bars by height.  A bar graph ordered from tallest to shortest is 
sometimes called a Pareto chart, after the Italian economist who recommended this 
procedure.   
 
 
1.31  Table 1.7 (reproduced below) contains data on the mean annual temperatures 
(degrees Fahrenheit) for the years 1941 to 2000 at two locations in California:  Pasadena 
and Redding.  Make time plots of both time series and compare their main features.  You 
can see why discussions of climate change often bring disagreement. 
 

Year Pasadena Redding Year Pasadena Redding 
1951 62.27 62.02 1976 64.23 63.51
1952 61.59 62.27 1977 64.47 63.89
1953 62.64 62.06 1978 64.21 64.05
1954 62.88 61.65 1979 63.76 60.38
1955 61.75 62.48 1980 65.02 60.04
1956 62.93 63.17 1981 65.80 61.95
1957 63.72 62.42 1982 63.50 59.14
1958 65.02 64.42 1983 64.19 60.66
1959 65.69 65.04 1984 66.06 61.72
1960 64.48 63.07 1985 64.44 60.51
1961 64.12 63.50 1986 65.31 61.76
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1962 62.82 63.97 1987 64.58 62.94
1963 63.71 62.42 1988 65.22 63.70
1964 62.76 63.29 1989 64.53 61.50
1965 63.03 63.32 1990 64.96 62.22
1966 64.25 64.51 1991 65.60 62.73
1967 64.36 64.21 1992 66.07 63.59
1968 64.15 63.40 1993 65.16 61.55
1969 63.51 63.77 1994 64.63 61.63
1970 64.08 64.30 1995 65.43 62.62
1971 63.59 62.23 1996 65.76 62.93
1972 64.53 63.06 1997 66.72 62.48
1973 63.46 63.75 1998 64.12 60.23
1974 63.93 63.80 1999 64.85 61.88
1975 62.36 62.66 2000 66.25 61.58

 
1.47   Here are the scores on the first exam in an introductory statistics course for 10 
students.   

80 73 92 85 75 98 93 55 80 90
 
Find the mean first exam score for these students. 
 
 
1.49   Here are the scores on the first exam in an introductory statistics course for 10 
students.   

80 73 92 85 75 98 93 55 80 90
 
Find the quartiles for these first-exam scores. 
 
 
1.51   Here are the scores on the first exam in an introductory statistics course for 10 
students.   
 

80 73 92 85 75 98 93 55 80 90
 
Make a boxplot for these first-exam scores. 
 
 
1.57   C-reactive protein (CRP) is a substance that can be measured in the blood.  Values 
increase substantially within 6 hours of an infection and reach a peak within 24 to 48 
hours after.  In adults, chronically high values have been linked to an increased risk of 
cardiovascular disease.  In a study of apparently healthy children aged 6 to 60 months in 
Papua, New Guinea, CRP was measured in 90 children.  The units are milligrams per liter 
(mg/l).  Here are the data from a random sample of 40 of these children: 
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0.00 0.00 30.61 46.70 22.82 0.00 5.36 59.76 0.00 20.78
3.90 5.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.10
5.64 3.92 73.20 0.00 0.00 4.81 5.66 15.74 0.00 7.89
8.22 6.81 0.00 26.41 3.49 9.57 0.00 0.00 9.37 5.53

 
 
 (a)  Find the five-number summary for these data. 
 (b) Make a boxplot. 
 (c) Make a histogram. 

(d) Write a short summary of the major features of this distribution.  Do you 
prefer the boxplot or the histogram for these data? 

 
 
1.103   Consider the ISTEP scores, which are approximately Normal, N(572, 51).  Find 
the proportion of students who have scores less than 600.  Find the proportion of students 
who have scores greater than or equal to 600.  Sketch the relationship between these two 
calculations using pictures of Normal curves similar to the ones given in Example 1.27. 
 
 
1.123.  The variable Z has a standard Normal distribution.   
 (a) Find the number z that has cumulative proportion 0.85. 
 (b) Find the number z such that the event Z > z has proportion 0.40. 
 
 
1.131   Reports on a student’s ACT or SAT usually give the percentile as well as the 
actual score.  The percentile is just the cumulative proportion stated as a percent; the 
percent of all scores that were lower than this one.  Jacob scores 16 on the ACT.  What is 
his percentile? 
 
 
1.139   The length of human pregnancies from conception to birth varies according to a 
distribution that is approximately Normal with mean 266 days and standard deviation 16 
days. 
 (a) What percent of pregnancies last less than 240 days (that’s about 8 months)? 

(b) What percent of pregnancies last between 240 and 270 days (roughly between 
8 months and 9 months)? 

 (c) How long do the longest 20% of pregnancies last? 
 
 
1.147  We expect repeated careful measurements of the same quantity be be 
approximately Normal.  Make a Normal quantile plot for Cavendish’s measurements in 
Exercise 1.40 (data reproduced below).  Are the data approximately Normal?  If not, 
describe any clear deviations from Normality. 
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5.50 5.55 5.57 5.34 5.42 5.30
5.61 5.36 5.53 5.79 5.47 5.75
4.88 5.29 5.62 5.10 5.63 5.68
5.07 5.58 5.29 5.27 5.34 5.85
5.26 5.65 5.44 5.39 5.46
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Chapter 2 Exercises 
 
2.7   Here are the data for the second test and the final exam for the same students as in 
Exercise 2.6: 
 

Second-test score 158 163 144 162 136 158 175 153 
Final-exam score 145 140 145 170 145 175 170 160 

 
(a) Explain why you should use the second-test score as the explanatory variable. 
(b) Make a scatterplot and describe the relationship. 
(c) Why do you think the relationship between the second-test score and the final-

exam score is stronger than the relationship between the first-test score and 
the final-exam score? 

 
 
2.21   Metabolic rate, the rate at which the body consumes energy, is important in studies 
of weight gain, dieting, and exercise.  The table below gives data on the lean body mass 
and resting metabolic rate for 12 women and 7 men who are subjects in a study of 
dieting.  Lean body mass, given in kilograms, is a person’s weight leaving out all fat.  
Metabolic rate is measured in calories burned per 24 hours, the same calories used to 
describe the energy content of foods.  The researchers believe that lean body mass is an 
important influence on metabolic rate. 

(a) Make a scatterplot of the data, using different symbols or colors for men and 
women. 

(b) Is the association between these variables positive or negative?  How strong is 
the relationship?  Does the pattern of the relationship differ for women and 
men?  How do the male subjects as a group differ from the female subjects as 
a group? 

 
Sex Mass Rate Sex Mass Rate 
M 62.0 1792 F 40.3 1189
M 62.9 1666 F 33.1 913
F 36.1 995 M 51.9 1460
F 54.6 1425 F 42.4 1124
F 48.5 1396 F 34.5 1052
F 42.0 1418 F 51.1 1347
M 47.4 1362 F 41.2 1204
F 50.6 1502 M 51.9 1867
F 42.0 1256 M 46.9 1439
M 48.7 1614

 
 
2.23  Table 2.3 (reproduced below) shows the progress of world record times (in seconds) 
for the 10,000 meter run up to mid-2004.  Concentrate on the women’s world record 
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times.  Make a scatterplot with year as the explanatory variable.  Describe the pattern of 
improvement over time that your plot displays. 
 

Women’s Record Times 
1967 2286.4 1982 1895.3
1970 2130.5 1983 1895.0
1975 2100.4 1983 1887.6
1975 2041.4 1984 1873.8
1977 1995.1 1985 1859.4
1979 1972.5 1986 1813.7
1981 1950.8 1993 1771.8
1981 1937.2

 
 
2.31   Here are the data for the second test and the final exam for the same students as in 
Exercise 2.6 (and 2.30): 
 

Second-test score 158 163 144 162 136 158 175 153 
Final-exam score 145 140 145 170 145 175 170 160 

 
Find the correlation between these two variables. 
 
 
2.45   Table 1.10 (reproduced below) gives the city and highway gas mileage for 21 two-
seater cars, including the Honda Insight gas-electric hybrid car. 

(a) Make a scatterplot of highway mileage y against city mileage x for all 21 cars.  
There is a strong positive linear association.  The Insight lies far from the 
other points.  Does the Insight extend the linear pattern of the other card, or is 
it far from the line they form? 

(b) Find the correlation between city and highway mileages both without and with 
the Insight.  Based on your answer to (a), explain why r changes in this 
direction when you add the Insight. 

 
City Hwy City Hwy 

17 24 9 13
20 28 15 22
20 28 12 17
17 25 22 28
18 25 16 23
12 20 13 19
11 16 20 26
10 16 20 29
17 23 15 23
60 66 26 32

9 15
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2.59   Here are the data for the second test and the final-exam scores (again).   
 
 

Second-test score 158 163 144 162 136 158 175 153 
Final-exam score 145 140 145 170 145 175 170 160 

 
(a) Plot the data with the second-test scores on the x axis and the final-exam 

scores on the y axis.   
(b) Find the least-squares regression line for predicting the final-exam score using 

the second-test score. 
(c) Graph the least-squares regression line on your plot. 

 
 
2.69   Table 2.4 (reproduced below) gives data on the growth of icicles at two rates of 
water flow.  You examined these data in Exercise 2.24.  Use least-squares regression to 
estimate the rate (centimeters per minute) at which icicles grow at these two flow rates.  
How does flow rate affect growth? 
 

Run 8903 Run 8905 

Time (min) Length (cm) Time(min)Length(cm) Time(min)Length(cm)Time (min)
 

Length (cm)
10 0.6 130 18.1 10 0.3 130 10.4
20 1.8 140 19.9 20 0.6 140 11.0
30 2.9 150 21.0 30 1.0 150 11.9
40 4.0 160 23.4 40 1.3 160 12.7
50 5.0 170 24.7 50 3.2 170 13.9
60 6.1 180 27.8 60 4.0 180 14.6
70 7.9 70 5.3 190 15.8
80 10.1 80 6.0 200 16.2
90 10.9 90 6.9 210 17.9

100 12.7 100 7.8 220 18.8
110 14.4 110 8.3 230 19.9
120 16.6 120 9.6 240 21.1

 
 
2.87   A study of nutrition in developing countries collected data from the Egyptian 
village of Nahya.  Here are the mean weights (in kilograms) for 170 infants in Nahya 
who were weighed each month during their first year of life:  
 

Age (months) 1 2 3 4 5 6 7 8 9 10 11 12 
Weight (kg) 4.3 5.1 5.7 6.3 6.8 7.1 7.2 7.2 7.2 7.2 7.5 7.8

 
(a) Plot weight against time. 
(b) A hasty user of statistics enters the data into software and computes the least-

squares line without plotting the data.  The result is 
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The regression equation is  
Weight = 4.88 + 0.267 age 
 
Plot this line on your graph.  Is it an acceptable summary of the overall pattern 
of growth?  Remember that you can calculate the least-squares line for any set 
of two-variable data.  It’s up to you to decide if it makes sense to fit a line.   

(c) Fortunately, the software also prints out the residuals from the least-squares 
line.  In order of age along the rows, they are 

 
–0.85 –0.31 0.02 0.35 0.58 0.62
 0.45 0.18 –0.08 –0.35 –0.32 –0.28

 
 

Verify that the residuals have sum zero (except for roundoff error).  Plot the 
residuals against age and add a horizontal line at zero.  Describe carefully the 
pattern that you see. 

 
 
2.93   Careful statistical studies often include examination of potential lurking variables.  
This was true of the study of the effect of nonexercise activity (NEA) on fat gain 
(Example 2.12, page 109), our lead example in Section 2.3.  Overeating may lead our 
bodies to spontaneously increase NEA (fidgeting and the like).  Our bodies might also 
spontaneously increase their basal metabolic rate (BMR), which measures energy use 
while resting.  If both energy uses increased, regressing fat gain on NEA alone would be 
misleading.  Here are data on BMR and fat gain for the same 16 subjects whose NEA we 
examined earlier: 
 

BMR increase (cal) 117 352 244 –42 –3 134 136 –32 
Fat gain (kg) 4.2 3.0 3.7 2.7 3.2 3.6 2.4 1.3 
BMR increase (cal) –99 9 –15 –70 165 172 100 35 
Fat gain (kg) 3.8 1.7 1.6 2.2 1.0 0.4 2.3 1.1 

 
The correlation between NEA and fat gain is r = –0.7786.  The slope of the regression 
line for predicting fat gain from NEA is b1 = –0.00344 kilogram per calorie.  What are 
the correlation and slope for BMR and fat gain?  Explain why these values show that 
BMR has much less effect on fat gain than does NEA. 
 
 
2.119   A market research firm conducted a survey of companies in its state.  They mailed 
a questionnaire to 300 small companies, 300 medium-sized companies, and 300 large 
companies.  The rate of nonresponse is important in deciding how reliable survey results 
are.  Here are the data on response to this survey. 
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Size of company Response No response Total 
Small 175 125 300 
Medium 145 155 300 
Large 120 180 300 

 
(a) What is the overall percent of nonresponse? 
(b) Describe how nonresponse is related to the size of business. (Use percents to 

make your statements precise.) 
(c) Draw a bar graph to compare the nonresponse percents for the three size 

categories. 
(d) Using the total number of responses as a base, compute the percent of 

responses that come from each of small, medium, and large businesses. 
(e) The sampling plan was designed to obtain equal numbers of responses from 

small, medium, and large companies.  In preparing an analysis of the survey 
results, do you think it would be reasonable to proceed as if the responses 
represented companies of each size equally? 
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Chapter 3 Exercises 
 
3.27   Doctors identify “chronic tension-type headaches” as headaches that occur almost 
daily for at least six months.  Can antidepressant medications or stress management 
training reduce the number and severity of these headaches?  Are both together more 
effective than either alone?  Investigators compared four treatments: antidepressant alone, 
placebo alone, antidepressant plus stress management, and placebo plus stress 
management.  Outline the design of the experiment.  The headache sufferers named 
below have agreed to participate in the study.  Use software or Table B at line 151 to 
randomly assign the subjects to the treatments. 
 

Anderson Archberger Bezawada Cetin Cheng 
Chronopoulou Codrington Daggy Daye Engelbrecht 
Guha Hatfield Hua Kim Kumar 
Leaf Li Lipka Lu Martin 
Mehta Mi Nolan Olbricht Park 
Paul Rau Saygin Shu Tang 
Towers Tyner Vassilev Wang Watkins 
Xu     

 
 
3.43   We often see players on the sidelines of a football game inhaling oxygen.  Their 
coaches think this will speed their recovery.  We might measure recovery from intense 
exercise as follows:  Have a football player run 100 yards three times in quick succession.  
Then allow three minutes to rest before running 100 yards again.  Time the final run.  
Because players vary greatly in speed, you plan a matched pairs experiment using 20 
football players as subjects. Describe the design of such an experiment to investigate the 
effect of inhaling oxygen during the rest period.  Why should each player’s two trials be 
on different days?  Use Table B at line 140 to decide which players will get oxygen on 
their first trial. 
 
 
3.51   The walk to your statistics class takes about 10 minutes, about the amount of time 
needed t listen to three songs on your iPod.  You decide to take a simple random sample 
of songs from a Billboard list of Rock Songs.  Here is the list: 
 

1 Miss Murder 2 Animal I Have 
Become 

3 Steady As She Goes 4 Dani 
California 

5 The Kill (Bury 
Me) 

6 Original Fire 7 When You Were 
Young 

8 MakeD – Sure 

9 Vicarious 10 The Diary of Jane     
 
Select the three songs for your iPod using a simple random sample.   
 
 
3.57   You are planning a report on apartment living in a college town.  You decide to 
select 5 apartment complexes at random for in-depth interviews with residents.  Select a 
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simple random sample of 5 of the following apartment complexes.  If you use Table B, 
start at line 137.   
 

1 Ashley Oaks 2 Country View 3 Mayfair Village 
4 Bay Pointe 5 Country Villa 6 Nobb Hill 
7 Beau Jardin 8 Crestview 9 Pemberly Courts 

10 Bluffs 11 Del-Lynn 12 Peppermill 
13 Brandon Place 14 Fairington 15 Pheasant Run 
16 Briarwood 17 Fairway Knolls 18 Richfield 
19 Brownstone 20 Fowler 21 Sagamore Ridge 
22 Burberry 23 Franklin Park 24 Salem Courthouse 
25 Cambridge 26 Georgetown 27 Village Manor 
28 Chauncey Village 29 Greenacres 30 Waterford Court 
31 Country Squire 32 Lahr House 33 Williamsburg 

 
 
3.67   Stratified samples are widely used to study large areas of forest.  Based on satellite 
images, a forest area in the Amazon basin is divided into 14 types.  Foresters studied the 
four most commercially valuable types: alluvial climax forests of quality levels 1, 2, and 
3, and mature secondary forest.  They divided the area of each type into large parcels, 
chose parcels of each type at random, and counted tree species in a 20-by-25 meter 
rectangle randomly placed within each parcel selected.  Here is some detail: 
 

Forest type Total parcels Sample size
Climax 1 36 4 
Climax 2 72 7 
Climax 3 31 3 
Secondary 42 4 

 
Choose the stratified sample of 18 parcels.  Be sure to explain how you assigned labels to 
parcels.  If you use Table B, start at line 140. 
 
 
3.91   We can construct a sampling distribution by hand in the case of a very small 
population.  The population contains 10 students.  Here are their scores on an exam: 
 

Student 0 1 2 3 4 5 6 7 8 9 
Score 82 62 80 58 72 73 65 66 74 62 

 
The parameter of interest is the mean score, which is 69.4.  The sample is an SRS of n = 
4 students drawn from this population.  The students are labeled 0 to 9 so that a simple 
random digit from table B chooses one student for the sample.   
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(a) Use table B to draw an SRS of size 4 from this population.  Write the four 
scores in your sample and calculate the mean x of the sample scores.  This 
statistic is an estimate of the population parameter. 

(b) Repeat this process 9 more times.  Make a histogram of the 10 values of .x   Is 
the center of your histogram close to 69.4?  (Ten repetitions give only a crude 
approximation to the sampling distribution.  If possible, pool your work with 
that of other students – using different parts of Table B – to obtain several 
hundred repetitions and make a histogram of the values of .x   This histogram 
is a better approximation to the sampling distribution.) 
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Chapter 4 Exercises 
 
4.7   The basketball player Shaquille O’Neal makes about half of his free throws over an 
entire season.  Use Table B or the Probability applet to simulate 100 free throws shot 
independently by a player who has probability 0.5 of making each shot. 

(a) What percent of the 100 shots did he hit? 
(b) Examine the sequence of hits and misses.  How long was the longest run of 

shots made?  Of shots missed?  (Sequences of random outcomes often show 
runs longer than our intuition thinks likely.) 

 
 
4.51   Spell-checking software catches “nonword errors,” which result in a string of 
letters  that is not a word, as when “the” is typed as “teh.”  When undergraduates are 
asked to write a 250 word essay (without spell checking), the number X of nonword 
errors has the following distribution: 
 
 
 
 
 
Sketch the probability distribution for this random variable.   
 
 
4.65   How many close friends do you have?  Suppose that the number of close friends 
adults claim to have varies from person to person with mean 9μ =  and standard 
deviation 2.5.σ =  An opinion poll asks this question of an SRS of 1100 adults.  We will 
see in the next chapter that in this situation the sample mean response x  has 
approximately the Normal distribution with mean 9 and standard deviation 0.075. What is 

(8 10),P x≤ ≤ the probability that the statistic x  estimates the parameter μ  to within ±1? 
 
 
4.73   Example 4.22 gives the distribution of grades (A = 4, B = 3, and so on)in English 
210 at North Carolina State University as  
 

Value of X 0 1 2 3 4 
Probability 0.05 0.04 0.20 0.40 0.31

 
Find the average (that is, the mean) grade in this course. 
 
 
4.89   According to the current Commissioners’ Standard Ordinary mortality table, 
adopted by state insurance regulators in December 2002, a 25-year-old man has these 
probabilities of dying during the next five years: 
 
 

Value of X 0 1 2 3 4 
Probability 0.1 0.3 0.3 0.2 0.1
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Age at death 25 26 27 28 29 
Probability 0.00039 0.00044 0.00051 0.00057 0.00060 

 
(a) What is the probability that the man does not die in the next five years?   
(b) An online insurance site offers a term insurance policy that will pay $100,000 

if a 25-year-old man dies within the next 5 years.  The cost is $175 per year.  
So the insurance company will take in $875 from this policy if the man does 
not die within five years.  If he does die, the company must pay $100,000.  Its 
loss depends on how many premiums were paid, as follows: 

 
Age at death 25 26 27 28 29 
Loss $99,825 $99,650 $99,475 $99,300 $99,125 

 
    What is the insurance company’s mean cash intake from such policies? 

 
4.137   A grocery store gives its customers cards that may win them a prize when 
matched with other cards.  The back of the card announces the following probabilities of 
winning various amounts if a customer visits the store 10 times: 
 

Amount $1000 $250 $100 $10 
Probability 1/10,000 1/1000 1/100 1/20

 
(a) What is the probability of winning nothing? 
(b) What is the mean amount won? 

(c) What is the standard deviation of the amount won?
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Chapter 5 Exercises 
 
 
5.5   (a) Suppose X has the B(4, 0.3) distribution.  Use software or Table C to find  

  P(X = 0) and P(X ≥ 3). 
        (b) Suppose X has the B(4, 0.7) distribution.  Use software or Table C to find  

 P(X = 4) and P(X ≤ 1). 
 
 
5.7   Suppose we toss a fair coin 100 times.  Use the Normal approximation to find the 
probability that the sample proportion is 
 (a) between 0.4 and 0.6. 
 (b) between 0.45 and 0.55. 
 
 
5.13   Typographic errors in a text are either nonword errors (as when “the” is typed as 
“teh”) or word errors that result in a real but incorrect word. Spell-checking software will 
catch nonword errors but not word errors.  Human proofreaders catch 70% of word 
errors.  You ask a fellow student to proofread an essay in which you have deliberately 
made 10 word errors. 

(a) If the student matches the usual 70% rate, what is the distribution of the 
number of errors caught?  What is the distribution of the number of errors 
missed? 

(b) Missing 4 or more out of 10 errors seems a poor performance.  What is the 
probability that a proofreader who catches 70% of word errors misses 4 or 
more out of 10? 

 
 
5.17    In the proofreading setting of Exercise 5.13, what is the smallest number of misses 
m with P(X ≥ m) no larger than 0.05?  You might consider m or more misses as evidence 
that a proofreader actually catches fewer than 70% of word errors. 
 
 
5.21   Children inherit their blood type from their parents, with probabilities that reflect 
the parents’ genetic makeup.  Children of Juan and Maria each have probability 1/4 of 
having blood type A and inherit independently of each other. Juan and Maria plan to have 
4 children; let X be the number who have blood type A.   
 (a) What are n and p in the binomial distribution of X? 

(b) Find the probability of each possible value of X, and draw a probability 
histogram for this distribution. 

(c) Find the mean number of children with type A blood, and mark the location of 
the mean on your probability histogram. 

 
 
5.25   The Harvard College Alcohol Study finds that 67% of college students support 
efforts to “crack down on underage drinking.”  The study took a sample of almost 15,000 
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students, so the population proportion who support a crackdown is very close to p = 0.67.  
The administration of your college surveys an SRS of 200 students and finds that 140 
support a crackdown on underage drinking.   

(a) What is the sample proportion who support a crackdown on underage 
drinking? 

(b) If in fact the proportion of all students on your campus who support a 
crackdown is the same as the national 67%, what is the probability that the 
proportion in an SRS of 200 students is as large or larger than the result of the 
administration’s sample? 

 
 
5.31   One way of checking the effect of undercoverage, nonresponse, and other sources 
of error in a sample survey is to compare the sample with known demographic facts 
about the population.  The 2000 census found that 23,772,494 of the 209,128,094 adults 
(aged 18 and over) in the United States called themselves “Black or African American.” 
 (a) What is the population proportion p of blacks among American adults? 

(b) An opinion poll chooses 1200 adults at random.  What is the mean number of 
blacks in such samples? (Explain the reasoning behind your calculation.) 

(c) Use a Normal approximation to find the probability that such a sample will 
contain 100 or fewer blacks.  Be sure to check that you can safely use the 
approximation. 

 
 
5.49   The gypsy moth is a serious threat to oak and aspen trees.  A state agriculture 
department places traps throughout the state to detect the moths.  When traps are checked 
periodically, the mean number of moths trapped is only 0.5, but some traps have several 
moths.  The distribution of moth counts is discrete and strongly skewed, with standard 
deviation 0.7.   

(a) What are the mean and standard deviation of the average number of moths 
x in 50 traps? 

(b) Use the central limit theorem to find the probability that the average number 
of moths in 50 traps is greater than 0.6. 

 
 
5.53   Sheila’s measured glucose level one hour after ingesting a sugary drink varies 
according to the Normal distribution with μ =125 mg/dl and σ  = 10 mg/dl.  What is the 
level L such that there is probability only 0.05 that the mean glucose level of 3 test results 
falls above L for Sheila’s glucose level distribution? 
 
 
5.57   The distribution of annual returns on common stocks is roughly symmetric, but 
extreme observations are more frequent than in a Normal distribution.  Because the 
distribution is not strongly non-Normal, the mean return over even a moderate number of 
years is close to Normal.  Annual real returns on the Standard & Poor’s 500 stock index 
over the period 1871 to 2004 have varied with mean 9.2% and standard deviation 20.6%.  
Andrew plans to retire in 45 years and is considering investing in stocks.  What is the 
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probability (assuming that the past pattern of variation continues) that the mean annual 
return on common stocks over the next 45 years will exceed 15%?  What is the 
probability that the mean return will be less than 5%? 
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Chapter 6 Exercises 
 
6.5   An SRS of 100 incoming freshmen was taken to look at their college anxiety level.  
The mean score of the sample was 83.5 (out of 100).  Assuming a standard deviation of 4, 
give a 95% confidence interval for ,μ  the average anxiety level among all freshmen. 
 
 
6.7   You are planning a survey of starting salaries for recent marketing majors.  In 2005, 
the average starting salary was reported to be $37,832.  Assuming the standard deviation 
for this study is $10,500, what sample size do you need to have a margin of error equal to 
$900 with 95% confidence? 
 
 
6.17   For many important processes that occur in the body, direct measurement of 
characteristics is not possible.  In many cases, however, we can measure a biomarker, a 
biochemical substance that is relatively easy to measure and is associated with the 
process of interest.  Bone turnover is the net effect of two processes: the breaking down 
of old bone, called resorption, and the building of new bone, called formation.  One 
biochemical measure of bone resorption is tartrate resistant acid phosphatase (TRAP), 
which can be measured in blood.  In a study of bone turnover in young women, serum 
TRAP was measured in 31 subjects.  The units are units per liter (U/l).  The mean was 
13.2 U/l.  Assume that the standard deviation is known to be 6.5 U/l.  Give the margin of 
error and find a 95% confidence interval for the mean for young women represented by 
this sample. 
 
 
6.29   A new bone study is being planned that will measure the biomarker TRAP 
described in Exercise 6.17.  Using the value of σ  given there, 6.5 U/l, find the sample 
size required to provide an estimate of the mean TRAP with a margin of error of 2.0 U/l 
for 95% confidence. 
 
 
6.43   You will perform a significance test of H0: 25μ = based on an SRS of n = 25.  
Assume 5.σ =  
 (a) If x = 27, what is the test statistic z? 
 (b) What is the P-value if HA: 25?μ >  
 (c) What is the p-value if HA: 25?μ ≠  
 
 
6.57   A test of the null hypothesis H0: 0μ μ=  gives test statistic z = –1.73.  
 (a) What is the p-value if the alternative is HA: 0 ?μ μ>  
 (b) What is the p-value if the alternative is HA: 0 ?μ μ<  
 (c) What is the p-value if the alternative is HA: 0 ?μ μ≠  
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6.69   The Survey of Study Habits and Attitudes (SSHA) is a psychological test that 
measures the motivation, attitude toward school, and study habits of students.  Scores 
range from 0 to 200.  The mean score for U.S. college students is about 115, and the 
standard deviation is about 30.  A teacher who suspects that older students have better 
attitudes toward school gives the SSHA to 25 students who are at least 30 years of age.  
Their mean score is 132.2.x =  

(a) Assuming that 30σ =  for the population of older students, carry out a test of 
H0: 115μ =  and HA: 115.μ > Report the p-value of your test, and state your 
conclusion clearly. 

(b) Your test in (a) required two important assumptions in addition to the 
assumption that the value of σ  is known.  What are they?  Which of these 
assumptions is most important to the validity of your conclusion in (a)? 

 
 
6.71   Refer to Exercise 6.26.  In addition to the computer computing mpg, the driver also 
recorded the mpg by dividing the miles driven by the number of gallons at teach fill-up.  
The following data are the differences between the computer’s and the driver’s 
calculations for that random sample of 20 records.  The driver wants to determine if these 
calculations are different.  Assume the standard deviation of a difference to be 3.0.σ =  
 

5.0 6.5 –0.6 1.7 3.7 4.5 8.0 2.2 4.9 3.0 
4.4 0.1 3.0 1.1 1.1 5.0 2.1 3.7 –0.6 –4.2 

 
(a) State the appropriate H0 and HA to test this suspicion. 
(b) Carry out the test.  Give the p-value, and then interpret the result in plain 

language. 
 
6.95  Every user of statistics should understand the distinction between statistical 
significance and practical importance.  A sufficiently large sample will declare very small 
effects statistically significant.  Let us suppose that SAT Mathematics (SATM) scores in 
the absence of coaching vary Normally with mean 505μ =  and 100.σ =   Suppose 
further that coaching may change μ  but does not change .σ   An increase in the SATM 
from 505 to 508 is of no importance in seeking admission to college, but this unimportant 
change can be statistically very significant.  To see this, calculate the p-value for the test 
of H0: 505μ =  against HA: 505μ >  in each of the following situations: 

(a) A coaching service coaches 100 students; their SATM scores average 
508.x =  

(b) By the next year, this service has coached 1000 students; their SATM scores 
average 508.x =  

(c) An advertising campaign brings the number of students coached to 10,000; 
their SATM scores average 508.x =  

 
 
6.113  Example 6.16 gives a test of a hypothesis about the SAT scores of California high 
school students based on an SRS of 500 students.  The hypotheses are H0: 450μ =  and 
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HA: 450.μ >  Assume that the population standard deviation is 100.σ =  The test rejects 
H0 at the 1% level of significance when z ≥ 2.326, where  
 

 450
100 / 500

xz −
=  

 
Is this test sufficiently sensitive to usually detect an increase of 10 points in the 
population mean SAT score?  Answer this question by calculating the power of the test 
against the alternative 460.μ =  
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Chapter 7 Exercises 
 
7.3  You randomly choose 15 unfurnished one-bedroom apartments from a large number 
of advertisements in you local newspaper.  You calculate that their mean monthly rent of 
$570 and their standard deviation is $105.  Construct a 95% confidence interval for the 
mean monthly rent of all advertised one-bedroom apartments.   
 
 
7.5   A test of a null hypothesis versus a two-sided alternative gives t = 2.35.   
 (a) The sample size is 15.  Is the test result significant at the 5% level?  
 (b) The sample size is 6.  Is the test result significant at the 5% level? 
 
 
7.25  A study of 584 longleaf pine trees in the Wade Tract in Thomas County, Georgia, is 
described in Example 6.1.  For each tree in the tract, the researchers measured the 
diameter at breast height (DBH).  This is the diameter of the three at 4.5 feet and the units 
are centimeters (cm).  Only trees with DBH greater than 1.5 cm were sampled.  Here are 
the diameters of a random sample of 40 of these trees: 
 

10.5 13.3 26.0 18.3 52.2 9.2 26.1 17.6 40.5 31.8 
47.2 11.4 2.7 69.3 44.4 16.9 35.7 5.4 44.2 2.2 
4.3 7.8 38.1 2.2 11.4 51.5 4.9 39.7 32.6 51.8 

43.6 2.3 44.6 31.5 40.3 22.3 43.3 37.5 29.1 27.9 
 

(a) Use a histogram or stemplot and a boxplot to examine the distribution of 
DBHs.  Include a Normal quantile plots if you have the necessary software.  
Write a careful description of the distribution. 

(b) Is it appropriate to use the methods of this section to find a 95% confidence 
interval for the mean DBH of all trees in the Wade Tract?  Explain why or 
why not. 

(c) Report the mean and margin of error and the confidence interval.   
 
 
7.29  Children in a psychology study were asked to solve some puzzles and were then 
given feedback on their performance.  Then they were asked to rate how luck played a 
role in determining their scores.  This variable was recorded on a 1 to 10 scale with 1 
corresponding to very lucky and 10 corresponding to very unlucky.  Here are the scores 
for 60 children: 
 

1 10 1 10 1 1 10 5 1 1 8 1 10 2 1 
9 5 2 1 8 10 5 9 10 10 9 6 10 1 5 
1 9 2 1 7 10 9 5 10 10 10 1 8 1 6 

10 1 6 10 10 8 10 3 10 8 1 8 10 4 2 
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(a) Use graphical methods to display the distribution.  Describe any unusual 
characteristics.  Do you think that these would lead you to hesitate before 
using the Normality-based methods of this section? 

 (b) Give a 95% confidence interval for the mean luck score. 
   
 
7.33  Nonexercise activity thermogenesis (NEAT) provides a partial explanation for the 
results you found in Exercise 7.32.  NEAT is energy burned by fidgeting, maintenance of 
posture, spontaneous muscle contraction, and other activities of daily living.   In the study 
of Exercise 7.32, the 16 subjects increased their NEAT by 328 calories per day, on 
average, in response to the additional food intake.  The standard deviation was 256. 

(a) Test the null hypothesis that there was no change in NEAT versus the two-
sided alternative.  Summarize the results of the test and give your conclusion. 

(b) Find a 95% confidence interval for the change in NEAT.  Discuss the 
additional information provided by the confidence interval that is not evident 
from the results of the significance test. 

 
 
7.35  Refer to Exercise 7.24.  In addition to the computer calculating mpg, the driver also 
recorded the mpg by dividing the miles driven by the amount of gallons at fill-up.  The 
driver wants to determine if these calculations are different.  
 

Fill-up 1 2 3 4 5 6 7 8 9 10 
Computer 41.5 50.7 36.6 37.3 34.2 45.0 48.0 43.2 47.7 42.2 
Driver 36.5 44.2 37.2 35.6 30.5 40.5 40.0 41.0 42.8 39.2 
Fill-up 11 12 13 14 15 16 17 18 19 20 
Computer 43.2 44.6 48.4 46.4 46.8 39.2 37.3 43.5 44.3 43.3 
Driver 38.8 44.5 45.4 45.3 45.7 34.2 35.2 39.8 44.9 47.5 

 
 (a) State the appropriate H0 and HA.   
 (b) Carry out the test.  Give the p-value, and then interpret the result. 
 
 
7.49   Use the sign test to assess whether the computer calculates a higher mpg than the 
driver in Exercise 7.35.  State the hypotheses, give the p-value using the binomial table 
(Table C), and report your conclusion. 
 
 
7.57  Assume 1 2 1 2 1 2100,  120,  10,  12,  10,  10.x x s s n n= = = = = =  Find a 95% 
confidence interval for the difference in the corresponding values of μ  using the second 
approximation for degrees of freedom. Would you reject the null hypothesis that the 
population means are equal in favor of the two-sided alternate at significance level 0.05?  
Explain. 
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7.61  A recent study at Baylor University investigated the lipid levels in a cohort of 
sedentary university students.  A total of 108 students volunteered for the study and met 
the eligibility criteria.  The following table summarizes the blood lipid levels, in 
milligrams per deciliter (mg/dl), of the participants broken down by gender: 
 

Females (n = 71) Males (n = 37)  
x  s x  s 

Total Cholesterol 173.70 34.79 171.81 33.24 
LDL 96.38 29.78 109.44 31.05 
HDL 61.62 13.75 46.47 7.94 

 
(a) Is it appropriate to use the two-sample t procedures that we studied in this 

section to analyze these data for gender differences?  Give reasons for your 
answer. 

(b) Describe the appropriate null and alternative hypotheses for comparing male 
and females total cholesterol levels. 

(c) Carry out the significance test.  Report the test statistic with the degrees of 
freedom and the p-value.  Write a short summary of your conclusion. 

(d) Find a 95% confidence interval for the difference between the two means.  
Compare the information given by the interval with the information given by 
the test. 

 
 
7.83  A market research firm supplies manufacturers with estimates of the retail sales of 
their products form samples of retail stores.  Marketing managers are prone to look at the 
estimate and ignore sampling error.  Suppose that an SRS of 70 stores this month shows 
mean sales of 53 units of a small appliance, with standard deviation 15 units.  During the 
same month last year, an SRS of 55 stores gave mean sales of 50 units, with standard 
deviation 18 units. An increase from 50 to 53 is 6%.  The marketing manager is happy 
because sales are up 6%. 

(a) Use the two-sample t procedure to give a 95% confidence interval for the 
difference in mean number of units sold at all retail stores. 

(b) Explain in language that the marketing manager can understand why he cannot 
be certain that sales rose by 6%, and that in fact sales may even have dropped. 

 
 
7.99  Compare the standard deviations of total cholesterol in Exercise 7.61.  Give the test 
statistic, the degrees of freedom, and the p-value. Write a short summary of your analysis, 

including comments on the assumptions of the test.
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Chapter 8 Exercises 
 
8.1  In a 2004 survey of 1200 undergraduate students throughout the United States, 89% 
of the respondents said they owned a cell phone.   For  90% confidence, what is the 
margin of error? 
 
 
8.3  A 1993 nationwide survey by the National Center for Education Statistics reports 
that 72% of all undergraduates work while enrolled in school.  You decide to test whether 
this percent is different at your university.  In your random sample of 100 students, 77 
said they were currently working. 
 (a) Give the null and alternative hypotheses. 
 (b) Carry out the significance test.  Report the test statistic and p-value.  

(c) Does is appear that the percent of students working at your university is 
different at the 0.05α =  level? 

 
 

8.5 Refer to Example 8.6.  Suppose the university was interested in a 90% confidence 
interval with margin of error 0.03.  Would the required sample size be smaller or larger 
than 1068 students?  Verify this by performing the calculation. 
 
 
8.11  Gambling is an issue of great concern to those involved in Intercollegiate athletics.  
Because of this, the National Collegiate Athletic Association (NCAA) surveyed student-
athletes concerning their gambling-related behaviors.  There were 5594 Division I male 
athletes in the survey.  Of these, 3547 reported participation in some gambling behavior.  
This included playing cards, betting on games of skill, buying lottery tickets, and betting 
on sports.   

Find the sample proportion and the large-sample margin of error for 95% 
confidence.  Explain in simple terms the 95%. 

 
 
8.15   The Pew Poll of n = 1048 U.S. drivers found that 38% of the respondents “shouted, 
cursed, or made gestures to other drivers” in the last year. 

Construct a 95% confidence interval for the true proportion of U.S. drivers who 
did these actions in the last year. 

 
 
8.29   The South African mathematician John Kerrich, while a prisoner of war during 
World War II, tossed a coin 10,000 times and obtained 5067 heads.   

(a) Is this significant evidence at the 5% level that the probability that Kerrich’s 
coin comes up heads is not 0.5?  Use a sketch of the standard Normal 
distribution to illustrate the p-value. 

(b) Use a 95% confidence interval to find the range of probabilities of heads that 
would not be rejected at the 5% level. 
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8.31  Suppose after reviewing the results of the survey in Exercise 8.30, you proceeded 
with preliminary development of the product.  Now you are at the stage where you need 
to decide whether or not to make a major investment to produce and market it.  You will 
use another random sample of your customers but now you want the margin of error to be 
smaller.  What sample size would you use if you wanted the 95% margin of error to be 
0.075 or less? 
 
 
8.35  A study was designed to compare two energy drink commercials.  Each participant 
was shown the commercials in random order and asked to select the better one.  
Commercial A was selected by 45 out of 100 women and 80 out of 140 men.  Give an 
estimate of the difference in gender proportions that favored Commercial A.  Also 
construct a large-sample 95% confidence interval for this difference. 
 
8.41   In Exercise 8.4, you were asked to compare the 2004 proportion of cell phone 
owners (89%) with the 2003 estimate (83%).  It would be more appropriate to compare 
these two proportions using the methods of this section.  Given that the sample size of 
each SRS is 1200 students, compare these to years with a significance test, and give an 
estimate of the difference in proportions of undergraduate cell phone owners with a 95% 
margin of error. 
 
 
8.49  A 2005 survey of Internet users reported that 22% downloaded music onto their 
computers.  The filing of lawsuits by the recording industry may be a reason why this 
percent has decreased from the estimate of 29% from a survey taken two years before.  
Assume that the sample sizes are both 1421.  Using a significance test, evaluate whether 
or not there has been a change in the percent fo Internet users who download music.  
Provide all the details for the test and summarize your conclusion.  Also report a 95% 
confidence interval for the difference in proportions and explain what information is 
provided in the interval that is not in the significance test results. 
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Chapter 9 Exercises 
 
9.5   M&M Mars Company has varied the mix of colors for M&M’s Milk Chocolate 
Candies over the years.  These changes in color blends are the result of consumer 
preference tests. Most recently, the color distribution is reported to be 13% brown, 14% 
yellow, 13% red, 20% orange, 24% blue, and 16% green.  You open up a 14-ounce bag 
of M&M’s and find 61 brown, 59 yellow, 49 red, 77 orange, 141 blue, and 88 green.  Use 
a goodness of fit test to examine how well this bag fits the percents stated by the M&M 
Mars company. 
 
 
9.11  Cocaine addiction is difficult to overcome.  Addicts have been reported to have a 
significant depletion of stimulating neurotransmitters and thus continue to take cocaine to 
avoid feelings of depression and anxiety.  A 3-year study with 72 chronic cocaine users 
compared an antidepressant drug called desipramine with lithium and a placebo.  
(Lithium is a standard drug to treat cocaine addiction.  A placebo is a substance 
containing no medication, used so that the effect of being in the study but not taking any 
drug can be seen.)  One-third of the subjects, chosen at random, received each treatment.  
Following are the results: 
 

 Cocaine relapse?
Treatment Yes No 
Desipramine 10 14 
Lithium 18 6 
Placebo 20 4 

 
(a) Compare the effectiveness of the three treatments in preventing relapse using 

percents and a bar graph.  Write a brief summary. 
(b) Can we comfortably use the chi-square test to test the null hypothesis that 

there is no difference between treatments?  Explain. 
(c) Perform the significance test and summarize the results. 

 
 
9.17  As part of the 1999 College Alcohol Study, students who drank alcohol in the last 
year were asked if drinking ever resulted in missing a class.  The data are given in the 
following table: 
 

 Drinking Status 
 
Missed Class 

 
Nonbinger

Occasional
Binger 

Frequent 
Binger 

No 4617 2047 1176 
Yes 446 915 1959 

 
(a) Summarize the results of this table graphically and numerically. 
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(b) What is the marginal distribution of drinking status?  Display the results 
graphically. 

(c) Compute the relative risk of missing a class for occasional bingers versus 
nonbingers and for frequent bingers versus nonbingers.  Summarize these results. 

(d) Perform the chi-square test for this two-way table.  Give the test statistic, degrees 
of freedom, the p-value, an your conclusion. 

 
 
9.19   The ads in the study described in the precious exercise were also classified 
according to the age group of the intended readership.  Here is a summary of the data: 
 

Magazine readership age group 
Model dress Young adult Mature adult
Not sexual 72.3% 76.1% 
Sexual 27.2% 23.9% 
Number of ads 1006 503 

 
Using parts (a) and (b) in the previous exercise as a guide, analyze these data and write a 
report summarizing your work. 
 
 
9.25  E. jugularis is a type of hummingbird that lives in the forest preserves of the 
Caribbean island of Santa Lucia.  The males and the females of this species have bills 
that are shaped somewhat differently.  Researchers who study these birds thought that the 
bill shape might be related to the shape of the flowers that the visit for food.  The 
researchers observed 49 females and 21 males.  Of the females, 20 visited the flowers of 
H. bihai, while none of the males visited these flowers.  Display the data in a two-way 
table and perform the chi-square test.  Summarize the results and five a brief statement of 
your conclusion.  Your two-way table has a count of zero in one cell.  Does this 
invalidate your significance test?  Explain why or why not. 
 
 
9.31  The study of shoppers in secondhand stores cited in the previous exercise also 
compared the income distribution of shoppers in the two stores.  Hers is the two-way 
table of counts: 
 

Income City 1 City 2
Under $10,000 70 62 
$10,000 to $19,999 52 63 
$20,000 to $24,999 69 50 
$25,000 to $34,999 22 19 
$35,000 or more 28 24 
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Verify that the χ2 statistic for this table is χ2 = 3.955.  Give the degrees of freedom and 
the p-value.  Is there good evidence that the customers at the two stores have different 
income distributions? 
 
 
9.35  In one part of the study described in Exercise 9.34, students were asked to respond 
to some questions regarding their interests and attitudes.  Some of these questions form a 
scale called PEOPLE that measures altruism, or an interest in the welfare of others.  Each 
student was classified as low, medium, or high on this scale.  Is there an association 
between PEOPLE score and field of study?  Here are the data: 
 

 PEOPLE score 
Field of Study Low Medium High 
Agriculture 5 27 35 
Child Dev. and Family Studies 1 32 54 
Engineering 12 129 94 
Liberal arts and education 7 77 129 
Management 3 44 28 
Science 7 29 24 
Technology 2 62 64 

 
Analyze the data and summarize your results.  Are there some fields of study that have 
very large or very small proportions of students in the high-PEOPLE category? 
 
 
9.41   The 2005 National Survey of Student Engagement reported on the use of campus 
services during the first year of college.  In terms of academic assistance (for example 
tutoring, writing lab), 43% never used the services, 35% sometimes used the services,, 
15% often used the services, and 7% very often used the services.  You decide to see if 
your large university has this same distribution.  You survey first-year students and 
obtain the counts 79, 83, 36, and 12 respectively.  Use a goodness of fit test to examine 
how well your university reflects the national average. 
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Chapter 10 Exercises 
 
 
10.5 The National Science Foundation collects data on the research and development 

spending by universities and colleges in the United States.  Here are the data for the 
years 1999 to 2001 (using 1996 dollars): 

 
Year 1999 2000 2001 
Spending (billions of dollars) 26.4 28.0 29.7 

 
 Do the following by hand or with a calculator and verify your results with a 
software package. 

(a) Make a scatterplot that shows the increase in research and development 
spending over time.  Does the pattern suggest that the spending is increasing 
linearly over time? 

(b) Find the equation of the least-squares regression line for prediction spending 
from year.  Add this line to your scatterplot. 

(c) For each of the three years, find the residual.  Use these residuals to calculate 
the standard error s. 

(d) Write the regression model for this setting  What are your estimates of the 
unknown parameters in this model? 

(e) Compute a 95% confidence interval for the slope and summarize what this 
interval tells you about the increase in spending over time. 

 
 
10.9  For each of the settings below, test the null hypothesis that the slope is zero versus 

the two-sided alternate. 
(a) n = 25, ˆ 1.3 12.10 ,y x= +  and SE 1b  = 6.31 

(b) n = 25, ˆ 13.0 6.10 ,y x= + and SE 1b  = 6.31 
 
 
10.11   Refer to Exercise 10.10 and Table 10.10.  

(a)  Construct a 95% confidence interval for the slope.  What does this interval tell 
you about the percent increase in tuition between 2000 and 2005? 

(b) The tuition at Stat U was $5000 in 2000.  What is the predicted tuition in 
2005? 

(c) Find a 95% prediction interval for the 2005 tuition at Stat U and summarize 
the results. 
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Table 10.1 In-state tuition and fees (in dollars) for 32 public universities 

University Year 2000 Year 2005 University Year 2000 Year 2005 
Penn State 7018 11508 Purdue 3872 6458
Pittsburgh 7002 11436 Cal-San Diego 3848 6685
Michigan 6926 9798 Cal-Santa Barbara 3832 6997
Rutgers 6333 9221 Oregon 3819 5613
Michigan State 5432 8108 Wisconsin 3791 6284
Maryland 5136 7821 Washington 3761 5610
Illinois 4994 8634 UCLA 3698 6504
Minnesota 4877 8622 Texas 3575 6972
Missouri 4726 7415 Nebraska 3450 5540
Buffalo 4715 6068 Iowa 3204 5612
Indiana 4405 7112 Colorado 3188 5372
Ohio State 4383 8082 Iowa State 3132 5634
Virginia 4335 7370 North Carolina 2768 4613
Cal-Davis 4072 7457 Kansas 2725 5413
Cal-Berkeley 4047 6512 Arizona 2348 4498
Cal-Irvine 3970 6770 Florida 2256 3094

 
 
10.17   Consider the data in Table 10.3 and the relationship between IBI and the percent 
of watershed area that was forest.  The relationship between these two variables is almost 
significant at the .05 level.  In this exercise you will demonstrate the potential effect of an 
outlier on statistical significance.  Investigate what happens when you decrease the IBI to 
0.0 for (1) an observation with 0% forest and (2) an observation with 100% forest.   
 

Table 10.3  Percent forest and index of biotic integrity 
Forest IBI Forest IBI Forest IBI Forest IBI Forest IBI 

0 47 9 33 25 62 47 33 79 83
0 61 10 46 31 55 49 59 80 82
0 39 10 32 32 29 49 81 86 82
0 59 11 80 33 29 52 71 89 86
0 72 14 80 33 54 52 75 90 79
0 76 17 78 33 78 59 64 95 67
3 85 17 53 39 71 63 41 95 56
3 89 18 43 41 55 68 82 100 85
7 74 21 88 43 58 75 60 100 91
8 89 22 84 43 71 79 84   

 
 
10.23 Storm Data is a publication of the National Climatic Data Center that contains a 

listing of tornadoes, thunderstorms, floods, lightning, temperature extremes, and 
other weather phenomena.  Table 10.4 summarizes the annual number of 
tornadoes in the United States between 1953 and 2005.   
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(a) Make a plot of the total number of tornadoes by year.  Does a linear trend over 
the years appear reasonable? 

(b) Are there any outliers or unusual patterns?  Explain your answer. 
(c) Run the simple linear regression and summarize the results, making sure to 

construct a 95% confidence interval for the average annual increase in the 
number of tornadoes. 

(d) Obtain the residuals and plot them versus year.  Is there anything unusual in 
the plot? 

(e) Are the residuals Normal?  Justify your answer. 
 

Table 10.4  Annual number of tornadoes in the United States between 1953 and 
2005 

Year Count Year Count Year Count Year Count 
1953 421 1967 926 1981 783 1995 1235
1954 550 1968 660 1982 1046 1996 1173
1955 593 1969 608 1983 931 1997 1148
1956 504 1970 653 1984 907 1998 1449
1957 856 1971 888 1985 684 1999 1340
1958 564 1972 741 1986 764 2000 1076
1959 604 1973 1102 1987 656 2001 1213
1960 616 1974 947 1988 702 2002 934
1961 697 1975 920 1989 856 2003 1372
1962 657 1976 835 1990 1133 2004 1819
1963 464 1977 852 1991 1132 2005 1194
1964 704 1978 788 1992 1298   
1965 906 1979 852 1993 1176   
1966 585 1980 866 1994 1082   

 
10.24 In Exercise 7.26 we examined the distribution of C-reactive protein (CRP) in a 

sample of 40 children from Papua New Guinea.  Serum retinol values for the same 
children were studied in Exercise 7.28.  One important question that can be 
addressed with these  data is whether or not infections, as indicated by CRP, cause 
a decrease in the measured values of retinol, low values of which indicate a 
vitamin A deficiency.  The data are given in Table 10.5. 

 
Table 10.5 C-reactive protein and serum retinol 

CRP RETINOL CRP RETINOL CRP RETINOL CRP RETINOL CRP RETINOL 

0 1.15 30.61 0.97 22.82 0.24 5.36 1.19 0 0.83

3.9 1.36 0 0.67 0 1 0 0.94 0 1.11

5.64 0.38 73.2 0.31 0 1.13 5.66 0.34 0 1.02

8.22 0.34 0 0.99 3.49 0.31 0 0.35 9.37 0.56

0 0.35 46.7 0.52 0 1.44 59.76 0.33 20.78 0.82

5.62 0.37 0 0.7 0 0.35 12.38 0.69 7.1 1.2

3.92 1.17 0 0.88 4.81 0.34 15.74 0.69 7.89 0.87

6.81 0.97 26.41 0.36 9.57 1.9 0 1.04 5.53 0.41
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(a) Examine the distribution of CRP and serum retinol.  Use graphical and 
numerical methods. 

(b) Forty percent of the CRP values are zero.  Does this violate any assumptions 
that we need to do a regression analysis using CRP to predict serum retinol?  
Explain your answer. 

(c) Run the regression, summarize the results, and write a short patagraph 
explaining your conclusions. 

(d) Explain the assumptions needed for your results to be valid.  Examine the data 
with respect to these assumptions and report your results. 

 
 
10.37   We assume that our wages will increase as we gain experience and become more 
valuable to our employers. Wages also increase because of inflation. By examining a 
sample of employees at a given point in time, we can look at part of the picture. How 
does length of service (LOS) relate to wages?  Table 10.8 gives data on the LOS in 
months and wages for 60 women who work in Indiana banks.  Wages are yearly total 
income divided by the number of weeks worked.  We have multiplied wages by a 
constant for reasons of confidentiality.   
 

Table 10.8  Bank wages and length of service (LOS) 
Wages LOS Wages LOS Wages LOS 

48.3355 94 64.1026 24 41.2088 97
49.0279 48 54.9451 222 67.9096 228
40.8817 102 43.8095 58 43.0942 27
36.5854 20 43.3455 41 40.7000 48
46.7596 60 61.9893 153 40.5748 7
59.5238 78 40.0183 16 39.6825 74
39.1304 45 50.7143 43 50.1742 204
39.2465 39 48.8400 96 54.9451 24
40.2037 20 34.3407 98 32.3822 13
38.1563 65 80.5861 150 51.7130 30
50.0905 76 33.7163 124 55.8379 95
46.9043 48 60.3792 60 54.9451 104
43.1894 61 48.8400 7 70.2786 34
60.5637 30 38.5579 22 57.2344 184
97.6801 70 39.2760 57 54.1126 156
48.5795 108 47.6564 78 39.8687 25
67.1551 61 44.6864 36 27.4725 43
38.7847 10 45.7875 83 67.9584 36
51.8926 68 65.6288 66 44.9317 60
51.8326 54 33.5775 47 51.5612 102

 
(a) Plot wages versus LOS.  Describe the relationship.  There is one woman with 

relatively high wages for her length of service.  Circle this point and do not 
use it in the rest of this exercise. 
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(b) Find the least-squares line.  Summarize the significance test for the slope.  
What do you conclude? 

(c) State carefully what the slope tells you about the relationship between wages 
and length of service. 

(d) Give a 95% confidence interval for the slope. 
 
10.39   The Leaning Tower of Pisa is an architectural wonder.  Engineers concerned 
about the tower’s stability have done extensive studies of its increasing tilt.  
Measurements of the lean of the tower over time provide much useful information.  The 
following table gives measurements for the years 1975 to 1987.  The variable “lean” 
represents the differences between where a point on the tower would be if the tower were 
straight and where it actually is.  The data are coded as tenths of a millimeter in excess of 
2.9 meters, so that the 1975 lean, which was 2.9642 meters, appears in the table as 642.  
Only the last two digits of the year were entered into the computer.   
 

Year 75 76 77 78 79 80 81 82 83 84 85 86 87 
Lean  642 644 656 667 673 688 696 698 713 717 725 742 757

 
(a) Plot the data.  Does the trend in lean over time appear to be linear? 
(b) What is the equation of the least-squares line?  What percent of the variation 

in lean is explained by this line? 
(c) Give a 99% confidence interval for th average rate of change (tenths of a 

millimeter per year) of the lean. 
 
10.51 A study reported a correlation r = 0.5 based on a sample of size n = 20; another 
reported the same correlation based on a sample size of n = 10.  For each, perform the test 
of the null hypothesis that 0.ρ =   Describe the results and explain why the conclusions 
are different. 
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Chapter 11 Exercises 
 
11.3  Recall Exercise 11.1.  Due to missing values for some students, only 86 students 
were used in the multiple regression analysis.  The following table contains the estimated 
coefficients and standard errors: 
 

Variable Estimate SE 
Intercept –0.764 0.651 
SAT Math 0.00156 0.00074
SAT Verbal 0.00164 0.00076
High school rank 1.4700 0.430 
Bryant College placement 0.889 0.402 

 
(a) All the estimated coefficients for the explanatory variables are positive.  Is this 

what you would expect?  Explain. 
(b) What are the degrees of freedom for the model and error? 
(c) Test the significance of each coefficient and state your conclusions. 

 
 
11.35   Let’s use regression methods to predict VO+, the measure of bone formation.   

(a) Since OC is a biomarker of bone formation, we start with a simple linear 
regression using OC as the explanatory variable.  Run the regression and 
summarize the results.  Be sure to include an analysis of the residuals.  

(b) because the processes of bone formation and bone resorption are highly 
related, it is possible that there is some information in the bone resorption 
variables that can tell us something about bone formation.  Use a model with 
both OC and TRAP, the biomarker of bone resorption, to predict VO+.  
Summarize the results.  IN the context of this model, it appears that TRAP is a 
better predictor of bone formation, VO+, than the biomarker of bone 
formation, OC.  Is this view consistent with the pattern of relationships that 
you described in the previous exercise?  One possible explanation is that, 
while all of these variables are highly related, TRAP is measured with more 
precision than OC.  

 
11.51  For each of the four variables in the CHEESE data set, find the mean, median, 
standard deviation, and interquartile range.  Display each distribution by means of a 
stemplot and use a Normal quantile plot to assess Normality of the data.  Summarize your 
findings. Note that when doing regressions with these data, we do not assume that these 
distributions are Normal.  Only the residuals from our model need to be (approximately) 
Normal.  The careful study of each variable to be analyzed is nonetheless an important 
first step in any statistical analysis. 
 
 
11.53   Perform a simple linear regression analysis using Taste as the response variable 
and Acetic as the explanatory variable.  Be sure to examine the residuals carefully.  
Summarize your results.  Include a plot of the data with the least-squares regression line.  
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Plot the residuals versus each of the other two chemicals.  Are any patterns evident?  
(The concentrations of the other chemicals are lurking variables for the simple linear 
regression.) 
 
11.55   Repeat the analysis of Exercise 11.53 using Taste as the response variable and 
Lactic as the explanatory variable. 
 
 
11.57   Carry out a multiple regression using Acetic and H2S to predict Taste.  
Summarize the results of your analysis.  Compare the statistical significance of Acetic in 
this model with its significance in the model with Acetic alone as a predictor (Exercise 
11.53).  Which model do you prefer?  Give a simple explanation for the fact that Acetic 
alone appears to be a good predictor of Taste, but with H2S in the model, it is not. 
 
 
11.59  Use the three explanatory variables Acetic, H2S, and Lactic in a multiple 
regression to predict Taste.  Write a short summary of your results, including an 
examination of the residuals.  Based on all of the regression analyses you have carried out 
on these data, which model do you prefer and why? 
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Chapter 12 Exercises 
 
 
12.3  An experiment was run to compare three groups.  The sample sizes were 25, 22, 
and 19, and the corresponding estimated standard deviations were 22, 20, and 18. 

(a) Is it reasonable to use the assumption of equal standard deviations when we 
analyze these data?  Give a reason for your answer. 

 (b) Give the values of the variances for the three groups. 
 (c)  Find the pooled variance. 
 (d) What is the value of the pooled standard deviation? 
 
 
12.15   A study compared 4 groups with 8 observations per group.  An F statistic of 3.33 
was reported.  

(a) Give the degrees of freedom for this statistic and the entries from Table E that 
correspond to this distribution. 

(b) Sketch a picture of this F distribution with the information from the table 
included. 

 (c) Based on the table information, how would you report the p-value? 
 (d) Can you conclude that all pairs of means are different?  Explain your answer. 
 
 
12.17   For each of the following situations, find the F statistic and the degrees of 
freedom.  Then draw a sketch of the distribution under the null hypothesis and shade in 
the portion corresponding to the p-value.  State how you would report the p-value. 
 (a) Compare 5 groups with 9 observations per group, MSE = 50, and MSG = 127. 
 (b) Compare 4 groups with 7 observations per group, SSG = 40, and SSE = 153. 
 
 
12.23   The National Intramural-Recreational Sports Association (NIRSA) performed a 
survey to look at the value of recreational sports on college campuses.  One of the 
questions asked each student to relate the importance of recreational sports to college 
satisfaction and success.  Responses were on a 10-point scale with 1 indicating total lack 
of importance and 10 indicating very high importance.  The following table summarizes 
these results: 
 

Class n Mean score
Freshman 724 7.6 
Sophomore 536 7.6 
Junior 593 7.5 
Senior 437 7.3 

 
(a) To compare the mean scores across classes, what are the degrees of freedom 

for the ANOVA F statistic? 
(b) The MSG =11.806.  If sp = 2.16, what is the F statistic? 
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(c) Give an approximate (from a table) or exact (from software) p-value.  What do 
you conclude? 

 
 
12.25   An experimenter was interested in investigating the effects of two stimulant drugs 
(labeled A and B).  She divided 20 rats equally into 5 groups (placebo, Drug A low, Drug 
A high, Drug B low, Drug B high) and 20 minutes after injection of the drug, recorded 
each rat’s activity level (higher score is more active). The following table summarizes the 
results: 
 

Treatment x  s 
Placebo 14.00 8.00
Low A 15.25 12.25
High A 15.25 12.25
Low B 16.75 6.25
High B 22.50 11.00

 
(a) Plot the means versus the type of treatment.  Does there appear to be a 

difference in the activity level?  Explain. 
(b) Is it reasonable to assume that the variances are equal?  Explain your answer, 

and if reasonable, compute sp. 
(c) Give the degrees of freedom for the F statistic. 
(d) The F statistic is 4.35.  Find the associated p-value and state your conclusions. 

 
12.29   Does bread lose its vitamins when stored?  Small loaves of bread were prepared 
with flour that was fortified with a fixed amount of vitamins.  After baking, the vitamin C 
content of two loaves was measured.  Another two loaves were baked at the same time, 
stored for one day,, and then the vitamin C content was measured.  In a similar manner, 
two loaves were stored for three, five, and seven days before measurements were taken.  
The units are milligrams of vitamin C per hundred grams of flour (mg/100 g).  Here are 
the data: 
 

Condition Vitamin C (mg/100 g)
Immediately after baking 47.62 49.79
One day after baking 40.45 43.46
Three days after baking 21.25 22.34
Five days after baking 13.18 11.65
Seven days after baking 8.51 8.13

 
(a) Give a table with sample size, mean, standard deviation, and standard error for 

each condition. 
(b) Perform a one-way ANOVA for these data.  Be sure to state your hypotheses, 

the test statistic with degrees of freedom, and the p-value. 
(c) Summarize the data and the means with a plot. Use the plot and the ANOVA 

results to write a short summary of your conclusions. 
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12.39   Kudzu is a plant that was imported to the United States from Japan and now 
covers over seven million acres in the South.  The plant contains chemicals called 
isoflavones that have been shown to have beneficial effects on bones.  One study used 
three groups of rats to compare a control group with rats that were fed wither a low dose 
or a high dose of isoflavones from kudzu.  One of the outcomes examined was the bone 
mineral density in the femur (in grams per square centimeter).  Here are the data: 
 

Treatment Bone mineral density (g/cm2) 
Control 0.228

0.209
0.218

0.221
0.221
0.245

0.234
0.204
0.210

0.220
0.220

0.217
0.203

0.228 
0.219 

Low dose 0.211
0.226
0.198

0.220
0.228
0.208

0.211
0.216
0.203

0.233
0.225

0.219
0.200

0.233 
0.208 

High dose 0.250
0.245
0.232

0.237
0.232
0.209

0.217
0.267
0.203

0.206
0.261
 

0.247
0.221

0.228 
0.219 

 
(a) Use graphical and numerical methods to describe the data. 
(b) Examine the assumptions necessary for ANOVA.  Summarize your findings. 
(c) Use a multiple-comparisons method to compare the three groups. 

 
12.45  Recommendations regarding how long infants in developing countries should be 
breast-fed are controversial.  If the nutritional quality of the breast milk is inadequate 
because the mothers are malnourished, then there is risk in inadequate nutrition for the 
infant.  On the other hand, the introduction of other foods carries the risk of infection 
from contamination.  Further complicating the situation is the fact that companies that 
produce infant formulas and other foods benefit when these foods are consumed by large 
numbers of customers.  One question related to this controversy concerns the amount of 
energy intake for infants who have other foods introduced into the diet at different ages.  
Part of one study compared the energy intakes, measured in kilocalories per day (kcal/d), 
for infants who were breast-fed exclusively for 4, 5, or 6 months.  Here are the data: 
 

Breast-fed for Energy intake (kcal/d) 
4 months 499

517
617

620
649
704

469
209
558

485
404
653

660
738
548

588
628

675 
609 

5 months 490
587
368

395
528
538

402
518
519

177
370
506

475
431

617
518

616 
639 

6 months 585
465

647 477 445 485 703 538 
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(a) Make a table giving the sample size, mean, and standard deviation for each 
group of infants.  Is it reasonable to pool the variance? 

(b) Run the analysis of variance.  Report the F statistic with its degrees of freedom 
and p-value.  What do you conclude? 

 
 
12.47   Many studies have suggested that there is a link between exercise and healthy 
bones.  Exercise stresses the cones and this causes them to get stronger.  One study 
examined the effect of jumping on the bone density of growing rats.  There were three 
treatments: a control with no jumping, a low-jump condition (the jump was 30 
centimeters), and a high jump condition (the ump was 60 centimeters).  After 8 weeks of 
10 jumps per day, 5 days per week, the bone density of the rats (expressed in mg/cm3) 
was measured.  Here are the data: 
 

Group Bone density (mg/cm3) 
Control 611 621 614 593 593 653 600 554 603 569 
Low jump 635 605 638 594 599 632 631 588 607 596 
High jump 650 622 626 626 631 622 643 674 643 650 

 
(a) Make a table giving the sample size, mean, and standard deviation for each 

group of rats.  Is it reasonable to pool the variances? 
(b) Run the analysis of variance.  Report the F statistic with its degrees of freedom 

and p-value.  What do you conclude? 
 
 

12.53 Refer to Exercise 12.25.  There are two comparisons of interest to the 
experimenter: They are (1) Placebo versus the average of the 2 low-dose treatments; and 
(2) the difference between High A and Low A versus the difference between High B and 
Low B. 

(a) Express each contrast in terms of the means (μ ’s) of the treatments. 
(b) Give estimates with standard errors for each of the contrasts. 
(c) Perform the significance tests for the contrasts.  Summarize the results of your 

tests and your conclusions. 
 
 
12.63   Refer to the price promotion study that we examined in Exercise 12.40.  The 
explanatory variable in this study is the number of price promotions in a 10 week period, 
with possible values of 1, 3, 5, and 7.  When using analysis of variance, we treat the 
explanatory variable as categorical.  An alternative analysis is to use simple linear 
regression.  Perform this analysis and summarize the results.  Plot the residuals from the 
regression model versus the number of promotions.  What do you conclude? 
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Chapter 13 Exercises 
 
 
13.7   A recent study investigated the influence that proximity and visibility of food have 
on food intake.  A total of 40 secretaries from the University of Illinois participated in the 
study.  A candy dish full of individually wrapped chocolates was placed either at the desk 
of the participant or at a location 2 meters from the participant.  The candy dish was 
either a clear (candy visible) or opaque (candy not visible) covered bowl.  After a week, 
the researchers noted not only the number of candies consumed per day but also the self-
reported number of candies consumed by each participant.  The table summarizes the 
mean differences between these two values (reported minus actual).   
 

Proximity Clear Opaque
Proximate –1.2 –0.8
Less proximate 0.5 0.4

 
Make a plot of the means and describe the patterns that you see.  Does the plot suggest an 
interaction between visibility and proximity? 
 
 
13.9   The National Crime Victimization Survey estimates that there were over 400,000 
violent crimes committed against women by their intimate partner that resulted in 
physical injury.  An intervention study designed to increase safety behaviors of abused 
women compared the effectiveness of six telephone intervention sessions with a control 
group of abused women who received standard care.  Fifteen different safety behaviors 
were examined.  One of the variables analyzed was that total number of behaviors (out of 
15) that each woman performed.  Here is a summary of the means of this variable at 
baseline (just before the first telephone call) an at follow-up 3 and 6 months later: 
 

Group Baseline 3 months 6 months
Intervention 10.4 12.5 11.9
Control 9.6 9.9 10.4

 
(a) Find the marginal means.  Are they useful for understanding the results of this 

study? 
(b) Plot the means.  Do you think there is an interaction?  Describe the meaning of 

an interaction for this study. 
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13.13   Analysis of data for a 3 × 2 ANOVA with 5 observations per cell gave the F 
statistics in the following table:  
 
 

Effect F 
A 1.53
B 3.87
AB 2.94

 
What can you conclude from the information given?   
 
 
13.17  Refer to the Exercise 13.16.  Here are the standard deviations for attitude toward 
brand: 
 

 Repetitions 
Familiarity 1 2 3 
Familiar 1.16 1.46 1.16
Unfamiliar 1.39 1.22 1.42

 
Find the pooled estimate of the standard deviation for these data.  Use the rule for 
examining standard deviations in ANOVA from Chapter 12 to determine if it is 
reasonable to use a pooled standard deviation for the analysis of these data. 
 
 
13.25  One way to repair serious wounds is to insert some material as a scaffold for the 
body’s repair cells to use as a template for new tissue.  Scaffolds made form extracellular 
material (ECM) are particularly promising for this purpose.  Because they are made form 
biological material, they serve as an effective scaffold and are then resorbed.  Unlike 
biological material that includes cells, however, they do not trigger tissue rejection 
reactions in the body.  One study compared 6 types of scaffold material.  Three of these 
were ECMs and the other three were made of inert materials.  There were three mice used 
per scaffold type.  The response measure was the percent of glucose phosphated 
isomerase (Gpi) cells in the region of the wound.  A large value is good, indicating that 
there are many bone marrow cells sent by the body to repair the tissue.  In Exercise 12.51 
we analyzed the data for rats whose tissues were measured 4 weeks after the repair.  The 
experiment included additional groups of rats who received the same types of scaffold 
but were measured at different times.  The data in the table below are for 4 weeks and 8 
weeks after the repair: 
 

(a) Make a table giving the sample size, mean, and standard deviation for each of 
the material-by-time combinations.  Is it reasonable to pool the variances?  
Because the sample sizes in this experiment are very small, we expect a large 
amount of variability in the sample standard deviations.  Although they vary 
more than we would prefer, we will proceed with the ANOVA. 
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(b) Make a plot of the means.  Describe the main features of the plot. 
(c) Run the analysis of variance.  Report the F statistics with degrees of freedom 

and p-values for each of the main effects and the interaction.  What do you 
conclude? 

 
Material 4 weeks 6 weeks 
ECM1 55 70 70 60 65 65
ECM2 60 65 65 60 70 60
ECM3 75 70 75 70 80 70
MAT1 20 25 25 15 25 25
MAT2 5 10 5 10 5 5
MAT3 10 15 10 5 10 10

 
13.27   Refer to the previous exercise.  Analyze the data for each time perior separately 
using a one-way ANOVA.  Use a multiple comparisons procedure where needed.  
Summarize the results. (The data are reproduced below.) 
 

Material 2 weeks 4 weeks 6 weeks 
ECM1 70 75 65 55 70 70 60 65 65 
ECM2 60 65 70 60 65 65 60 70 60 
ECM3 80 60 75 75 70 75 70 80 70 
MAT1 50 45 50 20 25 25 15 25 25 
MAT2 5 10 15 5 10 5 10 5 5 
MAT3 30 25 25 10 15 10 5 10 10 

 
13.31  One step in the manufacture of large engines requires that holes of very precise 
dimensions be drilled.  The tools that do the drilling are regularly examined and are 
adjusted to ensure that the holes meet the required specifications.  Part of the examination 
involves measurement of the diameter of the drilling tool.  A team studying the variation 
in the sizes of the drilled holes selected this measurement procedure as a possible cause 
of variation in the drilled holes.  They decided to use a designed experiment as one part 
of this examination.  Some of the data are given in Table 13.2 reproduced below.  The 
diameters in millimeters (mm) of five tools were measured by the same operator at three 
times (8:00 a.m., 11:00 a.m., and 3:00 p.m.).  The person taking the measurements could 
not tell which tool was being measured, and the measurements were taken in random 
order.   

(a) Make a table of means and standard deviations for each of the 5 × 3 
combinations of the two factors. 

(b) Plot the means and describe how the means vary with tool and time.  Note that 
we expect the tools to have slightly different diameters.  These will be 
adjusted as needed.  It is the process of measuring the diameters  that is 
important. 

(c) Use a two-way ANOVA to analyze these data.  Report the test statistics, 
degrees of freedom, and p-values for the significance tests. 
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Tool Time Diameter (mm) 

1 1 25.030 25.030 25.032
1 2 25.028 25.028 25.028
1 3 25.026 25.026 25.026
2 1 25.016 25.018 25.016
2 2 25.022 25.020 25.018
2 3 25.016 25.016 25.016
3 1 25.005 25.008 25.006
3 2 25.012 25.012 25.014
3 3 25.010 25.010 25.008
4 1 25.012 25.012 25.012
4 2 25.018 25.020 25.020
4 3 25.010 25.014 25.018
5 1 24.996 24.998 24.998
5 2 25.006 25.006 25.006
5 3 25.000 25.002 24.999

 
 
13.35   A study of the question “Do left-handed people live shorter lives than right-
handed people?” examined a sample of 949 death records and contacted next of kin to 
determine handedness.  Note that there are many possible definitions of “left-handed.”  
The researchers examined the effects of different definitions on the results of their 
analysis and found that their conclusions were not sensitive to the exact definition used.  
For the results presented here, people were defined to be right-handed if they wrote, 
drew, and threw a ball with the right hand.  All others were defined to be left-handed.  
People were classified by gender (female or male), and a 2 × 2 ANOVA was run with the 
age at death as the response variable.  The F statistics were 22.36 (handedness), 37.44 
(gender), and 2.10 (interaction).  The following marginal mean ages at death (in years) 
were reported:  77.39 (females), 71.32 (males), 75.00 (right-handed), and 66.03 (left-
handed). 

(a)  For each of the F statistics given above find the degrees of freedom and an 
approximate P-value.  Summarize the results of these tests. 
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Chapter 14 Exercises 
 
 
14.1    If you deal one card from a standard deck, the probability that the card is a heart is 
0.25. Find the odds of drawing a heart. 
 
 
14. 3   A study was designed to compare two energy drink commercials.  Each participant 
was shown two commercials, A and B, in random order and asked to select the better 
one.  There were 100 women and 140 men who participated in the study.  Commercial A 
was selected by 45 women and by 80 men.  Find the odds of selecting Commercial A for 
the men.  Do the same for the women. 
 
14.5   Refer to Exercise 14.3.  Find the log odds for the men and the log odds for the 
women. 
 
 
14.7   Refer to Exercises 14.3 and 14.5.  Find the logistic regression equation and the 
odds ratio. 
 
 
14.11   Following complaints about the working conditions in some apparel factories both 
in the United States and abroad, a joint government and industry commission 
recommended in 1998 that companies that monitor and enforce proper standards be 
allowed to display a “No Sweat” label on their products.  Does the presence of these 
labels influence consumer behavior? 
 A survey of U.S. residents aged 18 or older asked a series of questions about how 
likely they would be to purchase a garment under various conditions.  For some 
conditions, it was stated that the garment had a “No Sweat” label; for other, there was no 
mention of such a label.  On the basis of the responses, each person was classified as a 
“label user” or a “label nonuser.”  Suppose we want to examine the data for a possible 
gender effect.  Here are the data for comparing men and women: 
 

 
Gender

 
n 

Number of 
Label users

Women 296 63 
Men 251 27 

 
(a) For each gender find the proportion of label users. 
(b) Convert each of the proportions that you found in part (a) to odds. 
(c) Find the log of each of the odds that you found in part (b). 
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14.13   Refer to Exercise 14.11.  Use x = 1 for women and x = 0 for men. 
 (a) Find the estimates b0 and b1. 
 (b) Give the fitted logistic regression model. 
 (c) What is the odds ratio for men versus women? 
 
 
14.21   Different kinds of companies compensate their key employees in different ways.  
Established companies may pay higher salaries, while new companies may offer stock 
options that will be valuable if the company succeeds.  Do high-tech companies tend to 
offer stock options more often than other companies?  One study looked at a random 
sample of 200 companies.  Of these, 91 were listed in the Directory of Public High 
Technology Corporations, and 109 were not listed.  Treat these two groups as SRSs of 
high-tech and non-high-tech companies.  Seventy-three of the high-tech companies and 
75 of the non-high-tech companies offered incentive stock options to key employees. 

(a) What proportion of the high-tech companies offer stock options to their key 
employees?  What are the odds? 

(b) What proportion of the non-high-tech companies offer stock options to their 
key employees?  What are the odds? 

(c) Find the odds ratio using the odds for the high-tech companies in the 
numerator.  Describe the result in a few sentences. 

 
14.25  There is much evidence that high blood pressure is associated with increased risk 
of death from cardiovascular disease.  A major study of this association examined 3338 
men with high blood pressure and 2676 men with low blood pressure.  During the period 
of the study, 21 men from the low-blood-pressure group and 55 in the high-blood-
pressure group died from cardiovascular disease.   

(a) Find the proportion of men who died from cardiovascular disease in the high-
blood-pressure group.  Then calculate the odds. 

(b) Do the same for the low-blood-pressure group. 
(c) Now calculate the odds ratio with the odds for the high-blood-pressure group 

in the denominator.  Describe the result in words. 
 
 
14.27   Refer to the study of cardiovascular disease and blood pressure in Exercise 14.25.  
Computer output for a logistic regression analysis of these data gives an estimated slope  
b1 = 0.7505 with standard error 1 0.2578.bSE =  

(a) Five a 95% confidence interval for the slope. 
(b) Calculate the X2 statistic for testing the null hypothesis that the slope is zero 

and use Table F to find an approximate p-value. 
 
 
 
14.35  A study of alcohol use and deaths due to bicycle accidents collected data on a 
large number of fatal accidents.  For each of these, the individual who died was classified 
according to whether or not there was a positive test for alcohol and by gender.  Here are 
the data:  
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Gender n X (tested positive)
Female 191              27 
Male 1520            515 

 
Use logistic regression to study the question of whether or not gender is related to alcohol 
use in people who are fatally injured in bicycle accidents. 
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Chapter 15 Exercises 
 
 
15.3  Refer to Exercise 15.1.  State appropriate null and alternative hypotheses for this 
setting and calculate the value of W, the test statistic.   
 

Group A 552 448 68 243 30 
Group B 329 780 560 540 240

 
 
15.5  Refer to Exercises 15.1 and 15.3.  Find ,Wμ  ,Wσ  and the standardized rank sum 
statistic.  Then give the approximate p-value using the Normal approximation.  What do 
you conclude? 
 
 
15.11  How quickly do synthetic fabrics such as polyester decay in landfills?  A 
researcher buried polyester strips in the soil for different lengths of time, then dug up the 
strips and measured the force required to break them.  Breaking strength is easy to 
measure and is a good indicator of decay.  Lower strength means the fabric has decayed.  
Part of the study involved burying 10 polyester strips in well-drained soil in the summer.  
Five of the strips, chosen at random, were dug up after 2 weeks; the other 5 were dug up 
after 16 weeks.  Here are the breaking strengths in pounds: 
 

2 weeks 118 126 126 120 129
16 weeks 124 98 110 140 110

 
(a) Make a back-to-back stemplot.  Does it appear reasonable to assume that the 

two distributions have the same shape? 
(b) Is there evidence that the breaking strengths are lower for the strips buried 

longer? 
 
 
15.19    Refer to Exercise 15.18.  Here are the scores for a random sample of 7 spas that 
ranked between 19 and 36: 
 

Spa 1 2 3 4 5 6 7 
Diet/Cuisine 77.3 85.7 84.2 85.3 83.7 84.6 78.5 
Program/Facilities 95.7 78.0 87.2 85.3 93.6 76.0 86.3 

 
Is food, expressed by the Diet/Cuisine score, more important than activities, expressed as 
the Program/Facilities score, for a top ranking?  Formulate this question in terms of null 
and alternative hypotheses.  Then compute the differences and find the value of the 
Wilcoxon signed rank statistic, W+. 
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15.21  Refer to exercise 15.19.  Find ,
W
μ +  ,

W
σ +  and the Normal approximation for the 

p-value for the Wilcoxon signed rank test. 
 
 
15.25   Can the full moon influence behavior?  A study observed at nursing home patients 
with dementia.  The number of incidents of aggressive behavior was recorded each dat 
for 12 weeks.  Call a day a “moon day” if it is the day of a full moon or the day before or 
after a full moon.  Here are the average numbers of aggressive incidents for moon days 
and other days for each subject: 
 

Patient Moon days Other days
1 3.33 0.27 
2 3.67 0.59 
3 2.67 0.32 
4 3.33 0.19 
5 3.33 1.26 
6 3.67 0.11 
7 4.67 0.30 
8 2.67 0.40 
9 6.00 1.59 
10 4.33 0.60 
11 3.33 0.65 
12 0.67 0.69 
13 1.33 1.26 
14 0.33 0.23 
15 2.00 0.38 

 
The matched pairs t test (Example 7.7) gives P < 0.000015 and a permutation test 
(Example 16.14) gives P = 0.0001.  Does the Wilcoxon signed rank test, based on ranks 
rather than means, agree that there is strong evidence that there are more aggressive 
behaviors on moon days? 
 
15.31  Exercise 7.32 presents the data below on the weight gains (in kilograms) of adults 
who were fed an extra 1000 calories per day for 8 weeks.   

(a) Use a rank test to test the null hypothesis that the median weight gain is 16 
pounds, as theory suggests.  What do you conclude? 
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Subject Before After 
1 55.7 61.7
2 54.9 58.8
3 59.6 66.0
4 62.3 66.2
5 74.2 79.0
6 75.6 82.3
7 70.7 74.3
8 53.3 59.3
9 73.3 79.1

10 63.4 66.0
11 68.1 73.4
12 73.7 76.9
13 91.7 93.1
14 55.9 63.0
15 61.7 68.2
16 57.8 60.3

 
 
 
15.33  Many studies suggest that exercise causes bones to get stronger.  One study 
examined the effect of jumping on the bone density of growing rats.  Ten rats were 
assigned to each of three treatments:  a 60-centimeter “high jump,” a 30-centimeter “low 
jump,” and a control group with no jumping.  Here are the bone densities (in milligrams 
per cubic centimeter) after 8 weeks of 10 jumps per day: 
 

Group Bone density (mg/cm3) 
Control 611 621 614 593 593 653 600 554 603 569 
Low jump 635 605 638 594 599 632 631 588 607 596 
High jump 650 622 626 626 631 622 643 674 643 650 

 
(c) Do the Kruskal-Wallis test.  Explain the distinction between thehypotheses 

tested by Kruskal-Wallis and ANOVA. 
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Chapter 16 Exercises 
 
 
16.5  The distribution of carbon dioxide (CO2) emissions in Table 1.6 is strongly skewed 
to the right.  The United States and several other countries appear to he high outliers.  
Generate a bootstrap distribution for the mean of CO2 emissions; construct a histogram 
and Normal quantile plot to assess Normality of the bootstrap distribution.  On the basis 
of your work, do you expect the sampling distribution of x  to be close to Normal?   
 
 
16.7   The measurements of C-reactive protein in 40 children (Exercise 7.26) are very 
strongly skewed.  We were hesitant to use t procedures for these data.  Generate a 
bootstrap distribution for the mean of C-reactive protein; construct a histogram and 
Normal quantile plot to assess Normality of the bootstrap distribution.  On the basis of 
your work, do you expect the sampling distribution of x  to be close to Normal?   
 
 
16.9   We have two ways to estimate the standard deviation of a sample mean :x  use the 
formula /s n  for the standard error, or use the bootstrap standard error.   

(b) Find the sample standard deviation s for the CO2 emissions in Exercise 16.5 
and use it to find the standard error /s n  of the sample mean.  How closely 
does your result agree with the bootstrap standard error from your resampling 
in Exercise 16.5? 

 
 
 
16.13   Return to or create the bootstrap distribution resamples on the sample mean for 
the audio file lengths in Exercise 16.8.  In Example 7.11, the t confidence interval for the 
average length was constructed. 

(a) Inspect the bootstrap distribution.  Is a bootstrap t confidence interval 
appropriate?  Explain why or why not. 

(b)  Construct the 95% bootstrap t confidence interval. 
(c) Compare the bootstrap results with the t confidence interval reported in 

Example 7.11. 
 
 
16.25   Each year, the business magazine Forbes publishes a list of the world’s 
billionaires.  In 2006, the magazine found 793 billionaires.  Here is the wealth, as 
estimated by Forbes and rounded to the nearest 100 million, of an SRS of 20 of these 
billionaires: 
 

2.9 15.9 4.1 1.7 3.3 1.1 2.7 13.6 2.2 2.5 
3.4 4.3 2.7 1.2 2.8 1.1 4.4 2.1 1.4 2.6 
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Suppose you are interested in “the wealth of typical billionaires.”  Bootstrap an 
appropriate statistic, inspect the bootstrap distribution, and draw conclusions based on 
this sample. 
 
 
16.31   Consider the small random subset of the Verizon data in Exercise 16.1.  Bootstrap 
the sample mean using 1000 resamples.  The data are reproduced below: 
 

26.47 0.00 5.32 17.30 29.78 3.67
 

(a) Make a histogram and Normal quantile plot.  Does the bootstrap distribution 
appear close to Normal?  Is the bias small relative to the observed sample 
mean? 

(b) Find the 95% bootstrap t confidence interval.   
(c) Five the 95% bootstrap percentile confidence interval and compare it with the 

interval in part (b). 
 
 
16.45   Figure 2.7 shows a very weak relationship between returns on Treasury bills and 
returns on common stocks.  The correlation is r = –0.113.  We wonder if this is 
significantly different from 0.  To find out, bootstrap the correlation.  (The data are in the 
file ex16-045.)   

(a) Describe the shape and bias of the bootstrap distribution.  It appears that even 
simple bootstrap inference (t and percentile confidence intervals) is justified.  
Explain why. 

 
 
16.59   Exercise 7.41 gives data on a study of the effect of a summer language institute on 
the ability of high school language teachers to understand spoken French.  This is a 
matched pairs study, with scores for 20 teachers at the beginning (pretest) and end 
(posttest) of the institute.  We conjecture that the posttest scores are higher on the 
average. 

(a)  Carry out the matched pairs t test.  That is, state the hypotheses, calculate the 
test statistic, and give its p-value. 

(b) Make a Normal quantile plot of the gains: posttest score – pretest score.  The 
data have a number of ties and a low outlier.  A permutation test can help 
check the t test result.   

(c) Carry out the permutation test for the difference in means in matched pairs, 
using 9999 resamples.  The Normal quantile plot shows that the permutation 
distribution is reasonably Normal, but the histogram looks a bit odd.  What 
explains the appearance of the histogram?  What is the P-value for the 
permutation test?  Do your tests in here and in part (a) lead to the same 
practical conclusion? 
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16.77   Exercise 2.17 (page 97) describes a study that suggests that the “pain” caused by 
social rejection really is pain, in the sense that it causes activity in brain areas known to 
be activated by physical pain.  Here are data for 13 subjects on degree of social distress 
and extent of brain activity. 
 

 
Subject 

Social 
distress 

Brain 
activity 

 
Subject 

Social 
distress 

Brain 
activity 

1 1.26 –0.055 8 2.18 0.025 
2 1.85 –0.040 9 2.58 0.027 
3 1.10 –0.026 10 2.75 0.033 
4 2.50 –0.017 11 2.75 0.064 
5 2.17 –0.017 12 3.33 0.077 
6 2.67   0.017 13 3.65 0.124 
7 2.01   0.021    

 
Make a scatterplot of brain activity against social distress.  There is a positive linear 
association with correlation r = 0.878.  Is this correlation significantly greater than 0?  
Use a permutation test. 
 
 
16.85   The researchers in the study described in the Exercise 16.84 expected higher word 
counts in magazines aimed at people with high education level.  Do a permutation test to 
see if the data support this expectation.  State hypotheses, give a p-value, and state your 
conclusions.  How do your conclusions here relate to those from Exercise 16.84? 
 

Education level Word count 
High 205 

80 
203
208

229
89

208
49

146
93

230
46

215
34

153 
39 

205 
88 

Medium 191 
94 

219
206

205
197

57
68

105
44

109
203

82
139

88 
72 

39 
67 
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Chapter 17 Exercises 
 
 
17.5   A sandwich shop owner takes a daily sample of 6 consecutive sandwich orders at 
random times during the lunch rush and records the time it takes to complete each order.  
Past experience indicates that the process mean should be 168μ = seconds and the 
process standard deviation should be 30σ = seconds.  Calculate the center line and 
control limits for an x control chart. 
 
 
17.13   A meat-packaging company produces 1-pound packages of ground beef by having 
a machine slice a long circular cylinder of ground beef as it passes through the machine.  
The timing between consecutive cuts will alter the weight of each section.  Table 17.3, 
reproduced below, gives the weight of 3 consecutive sections of ground beef taken each 
hour over two 10-hour days.  Past experience indicates that the process mean is 1.03 and 
the weight varies with 0.02σ = lb.   

 
Sample Weight (pounds) x  s 

1 0.999 1.071 1.019 1.030 0.0373 
2 1.030 1.057 1.040 1.043 0.0137 
3 1.024 1.020 1.041 1.028 0.0108 
4 1.005 1.026 1.039 1.023 0.0172 
5 1.031 0.995 1.005 1.010 0.0185 
6 1.020 1.009 1.059 1.029 0.0263 
7 1.019 1.048 1.050 1.039 0.0176 
8 1.005 1.003 1.047 1.018 0.0247 
9 1.019 1.034 1.051 1.035 0.0159 
10 1.045 1.060 1.041 1.049 0.0098 
11 1.007 1.046 1.014 1.022 0.0207 
12 1.058 1.038 1.057 1.051 0.0112 
13 1.006 1.056 1.056 1.039 0.0289 
14 1.036 1.026 1.028 1.030 0.0056 
15 1.044 0.986 1.058 1.029 0.0382 
16 1.019 1.003 1.057 1.026 0.0279 
17 1.023 0.998 1.054 1.025 0.0281 
18 0.992 1.000 1.067 1.020 0.0414 
19 1.029 1.064 0.995 1.029 0.0344 
20 1.008 1.040 1.021 1.023 0.0159 

 
(a) Calculate the center line and control limits for an x  chart. 
(b) What are the center line and control limits for an s chart for this process? 
(c) Create the x and s chards for these 20 consecutive samples. 
(d) Does the process appear to be in control?  Explain. 
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17.15   A pharmaceutical manufacturer forms tablets by compressing a granular material 
that contains the active ingredient and various fillers.  The hardness of a sample from 
each lot of tables is measured in order to control the compression process.  The process 
has been operating in control with mean at the target value 11.5μ =  and estimated 
standard deviation 0.2.σ =   Table 17.4 gives three sets of data, each representing x  for 
20 successive samples of n = 4 tablets.  One set of data remains in control at the target 
value.  In a second set, the process mean μ  shifts suddenly to a new value.  In a third, the 
process mean drifts gradually. 

(a) What are the center line and control limits for an x  chart for this process? 
(b) Draw a separate x  chart for each of the three data sets.  Mark any points that 

are beyond the control limits. 
(c) Based on your work in (b) and the appearance of the control charts, which set 

of data comes from a process that is in control?  In which case does the 
process mean shift suddenly, and at about which sample do you think that the 
mean changed?  Finally, in which case does the mean drift gradually? 

 
Sample Data A Data B Data C 

1 11.602 11.627 11.495 
2 11.547 11.613 11.475 
3 11.312 11.493 11.465 
4 11.449 11.602 11.497 
5 11.401 11.360 11.573 
6 11.608 11.374 11.563 
7 11.471 11.592 11.321 
8 11.453 11.458 11.533 
9 11.446 11.552 11.486 
10 11.522 11.463 11.502 
11 11.664 11.383 11.534 
12 11.823 11.715 11.624 
13 11.629 11.485 11.629 
14 11.602 11.509 11.575 
15 11.756 11.429 11.730 
16 11.707 11.477 11.680 
17 11.612 11.570 11.729 
18 11.628 11.623 11.704 
19 11.603 11.472 12.052 
20 11.816 11.531 11.905 

 
 
 
17.19   Figure 17.10 reproduces a data sheet from the floor of a factory that makes 
electrical meters.  The sheet shows measurements of the distance between two mounting 
holes for 18 samples of size 5.  The heading informs us that the measurements are in 
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multiples of 0.0001 inch above 0.6000 inch.  That is, the first measurement, 44, stands for 
0.6044 inch.  All the measurements end in 4.  Although we don’t know why this is true, it 
is clear that in effect the measurements were made to the nearest 0.001 inch, not to the 
nearest 0.0001 inch. 
 Calculate x  and s for the first two samples.  The data file ex17_19 contains x  
and s for all 18 samples.  Based on long experience with this process, you are keeping 
control charts based on 43μ =  and 12.74.σ =   Make s and x  charts for the data in 
Figure 17.10 and describe the state of the process. 
 
 
17.21   An x  chart plots the means of samples of size 4 against center line CL = 700 and 
control limits LCL = 685 and UCL = 715.  The process has been in control.   

(a) What are the process mean and standard deviation? 
(b) The process is disrupted in a way that changes the mean to 690.μ =   What is 

the probability that the first sample after the disruption gives a point beyond 
the control limits of the x  chart? 

(c) The process is disrupted in a way that changes the mean to 690μ =  and the 
standard deviation to 15.σ =  What is the probability that the first sample after 
the disruption gives a point beyond the control limits of the x  chart? 

 
 

17.31   The x  and s control charts for the mesh-tensioning example (Figures 17.4 and 
17.7) were based on 275μ = mV and 43σ = mV.  Table 17.1 gives the 20 most recent 
samples from this process.   

(a) Estimate the process μ  and σ  based on these 20 samples. 
(b) Your calculations suggest that the process σ  may now be less than 43 mV.  

Explain why the s chart in Figure 17.7 (page 17-15) suggests the same 
conclusion.  (If this pattern continues, we would eventually update the value 
of σ  used for control limits.) 

 
 
17.35   Do the losses on the 120 individual patients in Table 17.7 appear to come from a 
single Normal distribution?  Make a Normal quantile plot and discuss what it shows.  Are 
the natural tolerances you found in the Exercise 17.34 trustworthy? 
 
17.37   The center of the specification for mesh tension is 250 mV, but the center of our 
process is 275 mV.  We can improve capability by adjusting the process to have center 
250 mV.  This is an easy adjustment that does not change the process variation.  What 
percent of monitors now meet the new specifications?  (From Exercise 17.36, the 
specifications are 150 to 350 mV; the standard deviation is 38.4 mV.) 
 
 
17.41   The record sheet in Figure 17.10 gives specifications as 0.6054 ± 0.0010 inch.  
That’s 54 ± 10 as the data are coded on the record.  Assuming that the distance varies 
Normally from meter to meter, about what percent of meters meet the specifications? 
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17.43   Make a Normal quantile plot of the 85 distances in data file ex17_19 that remain 
after removing sample 5.  How does the plot reflect the limited precision of the 
measurements (all of which end in 4)? Is there any departure from Normality that would 
lead you to discard your conclusions from Exercise 17.39?   
 
17.53   Table 17.1 gives 20 process control samples of the mesh tension of computer 
monitors.  In Example 17.13, we estimated from these samples that ˆ 275.065xμ = =  mV 
and ˆ 38.38sσ = =  mV. 

(a) The original specifications for mesh tension were LSL = 100 mV and USL = 
400 mV.  Estimate Cp and Cpk for this process. 

(b)  A major customer tightened the specifications to LSL = 150 mV and USL = 
350 mV.  Now what are Cp and Cpk? 

 
 
17.71   An egg farm wants to monitor the effects of some new handling procedures on the 
percent of eggs arriving at the packaging center with cracked or broken shells.  In th past, 
roughly 2% of the eggs were damaged.  A machine will allow the farm to inspect 500 
eggs per hour.  What are the initial center line and control limits for a chart of the hourly 
percent of damaged eggs? 
 
 
17.77   Because the manufacturing quality in the Exercise 17.76 is so high, the process of 
writing up orders is the major source of quality problems: the defect rate there is 8000 per 
million opportunities.  The manufacturer processes about 500 orders per month.   

(a)  What is p  for the order-writing process?  How many defective orders do you 
expect to see in a month? 

(b)  What are the center line and control limits for a p chart for plotting monthly 
proportions of defective orders?  What is the smallest number of bad orders 
that will result in a point above the upper control limit? 

 
 
17.83  You have just installed a new system that uses an interferometer to measure the 
thickness of polystyrene film.  To control the thickness, you plan to measure 3 film 
specimens every 10 minutes and keep x  and s charts.  To establish control, you measure 
22 samples of 3 films each at 10-minute intervals.  Table 17.12 gives x  and s for these 
samples.  The units are millimeters × 10–4.   Calculate control limits for s, make an s 
chart, and comment on control of short-term process variation. 
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