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Multiple Regression* 

When a scatterplot shows a linear relationship between a quantitative 
explanatory variable x and a quantitative response variable y, we fit a 
regression line to the data to describe the relationship. We can also use 

the line to predict the value of y for a given value of x. For example, Chapter 5 uses 
regression lines to describe relationships between 

•	 Fat gain y and nonexercise activity x. 

•	 The brain activity y of women when their partner has a painful experience and 
their score x on a test measuring empathy. 

•	 The number y of new adults that join a colony of birds and the percent x of 
adult birds that return from the previous year. 

In all these cases, other explanatory variables might improve our understanding of 
the response y and help us to better predict y: 

•	 Fat gain y depends on nonexercise activity x1, time spent daily in exercise 
activity x2, and sex x3. 

•	 A woman’s brain activity y when her partner has a painful experience may 
depend on her score x1 on a test of empathy and also on her score x2 on a test 
of emotional attachment to her partner. 

•	 The number y of new adults in a bird colony depends on the percent x1 of 
returning adults and also on the species x2 of birds we study. 

*The original version of this chapter was written by Professor Bradley Hartlaub of Kenyon College. 
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We will now call regression with just one explanatory variable simple linear  
regression to remind us that this is a special case. This chapter introduces the more  
general case of multiple regression, which allows several explanatory variables to  
combine in explaining a response variable. The material we discuss will help you  
understand and interpret the results of a multiple regression analysis. However, there  
are many issues that we do not discuss that are important to understand if you plan  
to carry out a multiple regression analysis yourself. Thus, we recommend you take  
a more advanced course on multiple regression if you plan to use these methods.  

simple linear regression 

multiple regression 

29.1 Adding a Categorical Variable in Regression 
In Chapter 4, we learned how to add a categorical variable to a scatterplot by using 
different colors or plot symbols to indicate the different values of the categorical 
variable. Consider a simple case: the categorical variable (call it x2) takes just two 
values. We want to explore the effect of both a quantitative variable (call it x1) and 
x2 on a response y. Here is an example. 

step4 

DA
TA

 

MPG 

EXAMPLE 29.1 

StAte:  The gas mileage of motor vehicles depends on many factors. One of these 
is the size of the engine. Engine size is reported as engine displacement, which is the 
swept volume of all the pistons inside the cylinders of the engine in a single move­
ment from top dead center to bottom dead center. One would expect larger engine 
sizes to be associated with lower gas mileages. To explore this, we examine data from 
a random sample of 48 vehicles from model year 2016.1  

Table 29.1 shows the combined city and highway gas mileage in miles per gallon 
(MPG), the engine displacement in liters, and the type of vehicle (car or truck) for 

table 29.1 Gas mileage, engine displacement, and vehicle type for 48 vehicles from 
model year 2016 

MPG Displacement Type MPG Displacement Type MPG Displacement Type MPG Displacement Type 

20 3.0 Car 21 3.0 Car 17 4.0 Truck 17 6.2 Truck 

18 3.8 Car 21 4.0 Car 19 5.3 Truck 16 6.2 Truck 

24 3.4 Car 23 3.0 Car 17 5.7 Truck 16 3.5 Truck 

31 1.5 Car 22 2.0 Car 22 2.5 Truck 23 3.0 Truck 

19 5.0 Car 32 1.8 Car 22 2.0 Truck 14 5.7 Truck 

15 4.7 Car 29 2.5 Car 20 3.6 Truck 24 3.0 Truck 

16 5.4 Car 32 1.8 Car 20 3.6 Truck 

28 2.4 Car 22 3.0 Car 24 2.0 Truck 

26 2.0 Car 18 5.0 Car 25 2.0 Truck 

21 3.0 Car 18 4.8 Car 22 3.5 Truck 

15 6.0 Car 26 2.0 Car 23 2.0 Truck 

30 2.0 Car 20 3.7 Car 29 1.8 Truck 

29 1.6 Car 27 1.6 Car 21 2.4 Truck 

26 1.6 Car 28 2.0 Car 26 2.4 Truck 
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29.1 Adding a Categorical Variable in Regression 29-3 

the 48 vehicles. Trucks (which include SUVs) differ in a variety of ways from cars 
and are often characterized as less fuel efficient. Because trucks tend to have larger 
engines in order haul heavy loads, this difference in gas mileage may simply be due 
to engine displacement. Do the data provide any evidence that this is not the case? 
If so, this suggests that there are features of trucks, other than engine displacement, 
that are responsible for the difference in gas mileage performance. 

PLAN: Make a scatterplot to display the relationship MPG y and engine displace­
ment x1. Use different colors for the two vehicle types. (Type is a categorical variable 
x2 that takes two values.) If both vehicle types show linear patterns, fit two separate 
least-squares regression lines to describe them. 

SoLVe:  Figure 29.1 shows a scatterplot with two different plotting symbols, one for 
cars and one for trucks. Both vehicle types show a linear pattern with larger engine 
displacement associated with lower MPG. Because the points corresponding to cars 
and trucks are interspersed, it is difficult to tell if the pattern is different for both. If 
we look closely, we notice that among the vehicles with the smallest engine displace­
ments (below 3), those with the highest MPG are almost all cars, and the majority of 
those with the lowest MPG (below 17.5) are trucks. However, if we look at vehicles 
with the largest engine displacements (above 5), the pattern is less clear, especially 
because there is only a single car with such a large engine displacement. Closer 
examination suggests that there may be differences in gas mileages of cars and 
trucks that cannot simply be explained by engine displacement, but it is also possible 
that these observed differences are simply due to chance. Would we see these same 
differences in another sample? We will soon learn how to formally estimate param­
eters and make inferences for two regression lines. This will help us assess whether 
the differences in the regression lines can be attributed simply to chance. 

figure 29.1 
A scatterplot of MPG for a sample of 
48 vehicles from model year 2016, for 
Example 29.1. 

Because we see that the relationship between gas mileage and engine displace-
ment may be different for cars and trucks, we would like to have a single regression 
model that allows us to explore this insight. To do this, introduce a second explana-
tory variable x2 for “vehicle type.” Unfortunately, vehicle type is not numerical. To 
solve this problem, we use values 0 and 1 to distinguish the two vehicle types. Now 
we have an indicator variable 

x2 5 0   for  “car” 

x2 5 1   for  “truck”   

42578_ch29_online.indd 3 8/23/17 11:46 AM 



29-4 Chapter 29  Multiple Regression

  

   
    

  
 

 

 

 Indicator Variable 
An indicator variable places individuals into one of two categories, usually coded by 
the two values 0 and 1. 

Indicator variables are commonly used to indicate sex (0 5 male, 1 5 female), 
condition of patient (0 5 good, 1 5 poor), status of order (0 5 undelivered, 1 5 
delivered), and many other characteristics for individuals. 

The conditions for inference in simple linear regression (Chapter 26, text 
page 603) describe the relationship between the explanatory variable x and the 
mean response �y in the population by a population regression line �y  5  �0  1  �1x. The 
switch in notation from �y  5  �  1  �x allows an easier extension to other models. 
Suppose we add a second explanatory variable, so that our regression model for the 
population becomes 

�y 5 �0 1 �1x1 1 �2x2 

The other conditions for inference are the same as in the simple linear regression 
setting: for any fixed values of the explanatory variables, y varies about its mean 
according to a Normal distribution with unknown standard deviation �  that is the 
same for all values of x1 and  x2. We will look in detail at conditions for inference in 
multiple regression later on.  

EXAMPLE 29.2 

Multiple regression models are no longer simple straight lines, so we must think a bit 
harder to interpret what they say. Consider our model 

�y 5 �0 1 �1x1 1 �2x2 

in which y is the gas mileage, x1 is the engine displacement, and x2 is an indicator 
variable for vehicle type. For cars, x2  5 0 and the model becomes 

�y 5 �0 1 �1x1 

For trucks, x2  5 1 and the model is 

�y 5 �0 1 �1x1 1 �2 

5 (�0 1 �2) 1 �1x1 

Look carefully: the slope that describes how the mean gas mileage changes as 
the engine displacement x1 varies is �1 in both models. The intercepts differ: �0  
for cars and �0  1  �2 for trucks. So �2 represents a fixed change between cars and 
trucks. Figure 29.2 is a graph of this model with all three �’s identified. By adding 
the indicator variable x2  for vehicle type, we have produced a regression model for 
two parallel straight lines. 

You will sometimes see indicator variables referred to as dummy variables. We have 
demonstrated how indicator (dummy) variables can be used to represent a categori-
cal variable with two categories. More advanced books on multiple regression dis-
cuss how multiple indicator (dummy) variables can be used to represent categorical 
variables with more than two categories. 
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29.2 Estimating Parameters 29-5 

figure 29.2
Multiple regression model with two par-
allel straight lines, for Example 29.2. 

Macmillan Learning online Resources 

•	 The	 Whiteboard	 video,	 An Overview of  Multiple Regession,	 discusses	 the	 
goals	 of 	multiple	 regression	 and 	their 	importance. 

APPLY YOUR KNOWLEDGE 

29.1	  Bird Colonies.  Suppose (this is too simple to be realistic) that the number y  of  
new birds that join a colony this year has the same straight-line relationship with  
the percent x1 of returning birds in colonies of two different bird species. An indi-
cator variable shows which  species we observe: x2  5 0 for one and x2  5 1 for the  
other. Write a population regression model that describes this setting. Explain in  
words what each  � in your model means. 

29.2	  How Fast Do Icicles Grow?  We have data on the growth of icicles starting 
at length 10 centimeters (cm) and at length 20 cm. An icicle grows at the same 
rate, 0.15 cm per minute, starting from either length. Give a population regres-
sion model that describes how mean length changes with time x1 and starting 
length x2. Use numbers, not symbols, for the �’s in your model. 

29.2 estimating Parameters 
How shall we estimate the �’s in the model �y  5  �0  1  �1x1  1  �2x2? Because we 
hope to predict y, we want to make the errors in the y direction small. We can’t 
call this the vertical distance from the points to a line as we did for a simple linear 
regression model because we now have two lines. But we still concentrate on the 
prediction of  y and, therefore, on the deviations between the observed responses y  
and the responses predicted by the regression model. 

The method of least squares estimates the �’s in the model by choosing the val-
ues that minimize the sum of the squared deviations in the y direction,  

S(  observed   y 2  predicted  ⁄
 y)2 5 S(y 2 y)2

Call the values of the �’s that do this b’s. The least least-squares regression model   
⁄y 5  b0  1  b1x1  1  b2x2 estimates the population regression model  �y  5  �0 1 �1x1 1 �2x2. 
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The remaining parameter is the standard deviation �, which describes the vari-
ability of the response y about the mean given by the population regression model.  
Recall that the residuals are the differences between the observed responses y and the  
responses predicted by the least-squares model. Because the residuals estimate the  
“left-over variation” about the regression model, the standard deviation s  of  the  residu-
als is used to estimate �. The value of s is also referred to as the regression standard error. 

residuals 

Why Some Men Earn 
More 
Research based on data  

from the U.S. Bureau of Labor  
Statistics and the U.S. Census Bureau  
suggests that women earn 80 cents  
for every dollar men earn. Although  
the literature is full of clear and  
convincing cases of discrimination  
based on height, weight, race, sex, and  
religion, new studies suggest that our  
choices explain a considerable amount 
of the variation in wages. Earning  
more often means that you are willing  
to accept longer commuting times,  
safety risks, frequent travel, long  
hours, and other responsibilities  
that take away from your time at  
home with family and friends. When  
choosing between time and money,  
make sure that you are happy with  
your choice! 

Regression Standard error  
The regression standard error for the multiple regression model ⁄ y 5  b0  1  b1x1  1  b2x2 is 

1 
s 5 Î S   residual2 

n 2 3 
 

1 
5 Î S(y ⁄2 y)2 

n 2 3 

Use s to estimate the standard deviation � of the responses about the mean given by the 
population regression model. 

Notice that instead of dividing by (n 2 2), the number of observations less 2, as 
we did for the simple linear regression model in Chapter 25, we are now dividing 
by  (n 2 3), the number of observations less 3. Because we are estimating three �  
parameters in our population regression model, the degrees of freedom must reflect 
this change. In general, the degrees  of  freedom  for the regression standard error 
will be the number of data points minus the number of parameters in the popula-
tion regression model. 

degrees of  freedom 

EXAMPLE 29.3 

Example 29.2 introduced the regression model 

�y 5 �0 1 �1x1 1 �2x2 

for predicting MPG y from engine displacement x1 and vehicle type x2. Statistical 
software gives the least-squares estimate of this model as 

y⁄ 5 32.077 2 2.830x1 2 1.264x2 

By substituting the two values of the indicator variable into this estimated regression 
equation, we can obtain a least-squares line for each vehicle type. The predicted 
MPGs are 

y⁄ 5 30.813 2 2.830x1  for  trucks  (x2 5 1) 

and 

y⁄ 5 32.077 2 2.830x1   for  cars  (x2 5 0) 

These two least-squares lines have the same slope and thus are parallel. The esti­
mate b2 5 21.264 tells us that using this regression model we would predict trucks,  
on average, to get a 1.264 lower MPG than cars for all values of engine displacement.  
The regression standard error s 5 2.599 indicates the size of the “typical” error. We  
would expect approximately 95% of the reporting percents of all vehicles of the same  
engine size and vehicle type (the same values of  x1 and x2) to be within 2 3 2.599 5 
5.198 of the mean predicted reporting percent for that engine size and vehicle type.  

DA
TA

 

MPG2 

42578_ch29_online.indd 6 8/23/17 11:46 AM 

Chapter 29  Multiple Regression



  

   

29.2	  Estimating Parameters 29-7 

APPLY YOUR KNOWLEDGE 

29.3	  Gas Mileage, continued.  Table 29.2 provides data on gas mileage, engine 
displacement, whether the vehicle is turbocharged, and vehicle type from a 
second random sample of 48 vehicles from model year 2016. Descriptive statis-
tics and a scatterplot for gas mileages for cars and trucks from Table 29.2   
accompany this exercise. DA

TA MPG3 

table 29.2 Gas mileage, engine displacement, turbocharged, and vehicle type 
for second sample of 48 vehicles from model year 2016 

MPG Displacement Turbocharged Type MPG Displacement Turbocharged Type 

27 1.4 Yes Car 20 3.6 No Truck 

22 3.4 No Car 19 5.3 No Truck 

21 3.8 No Car 15 5.7 No Truck 

21 3.8 No Car 23 3.5 No Truck 

23 3.0 Yes Car 22 2.7 No Truck 

35 1.4 No Car 24 2.0 Yes Truck 

19 5.0 No Car 23 2.0 Yes Truck 

19 3.0 Yes Car 22 3.5 No Truck 

17 4.4 Yes Car 26 2.4 No Truck 

35 1.4 Yes Car 26 2.0 No Truck 

33 1.4 Yes Car 21 3.5 No Truck 

30 2.0 No Car 19 3.6 Yes Truck 

35 1.5 No Car 25 2.5 No Truck 

30 3.5 No Car 22 2.3 Yes Truck 

30 3.0 Yes Car 18 5.3 No Truck 

30 2.4 No Car 21 2.3 Yes Truck 

28 2.0 No Car 16 3.5 Yes Truck 

24 3.5 No Car 17 4.8 Yes Truck 

33 2.0 No Car 

23 3.5 No Car 

27 2.0 Yes Car 

34 1.8 No Car 

21 3.0 Yes Car 

21 3.6 No Car 

19 3.5 No Car 

23 2.0 Yes Car 

19 4.7 Yes Car 

27 1.6 Yes Car 

25 2.0 Yes Car 

29 2.0 Yes Car 
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Descriptive Statistics: MPG-car, Engine Displacement-car, MPG-truck, Engine 
Displacement-truck 

Variable Mean StdDev 
MPG-car  26.00 5.60 
Engine Displacement-car  2.720 1.059 
MPG-truck  21.056 3.262 
Engine Displacement-truck  3.361 1.217 

Correlations: MPG-car, Engine Displacement-car 

Pearson correlation of MPG-car and Engine Displacement-car = -0.794 

Correlations: MPG-truck, Engine Displacement-truck 

Pearson correlation of MPG-truck and Engine Displacement -truck = -0.80 

(a) Use the descriptive statistics to compute the least–squares regression line 
for predicting MPG from engine displacement for cars. 

(b) Use the descriptive statistics to compute the least–squares regression line 
for predicting MPG from engine displacement for trucks. 

(c) Interpret the value of the slope for each of your estimated models. 

(d) Would you be willing to use the multiple regression model with equal 
slopes to predict MPG for cars and trucks? Explain why or why not. 

29.4	  Gas Mileage, continued.  In Example 29.3, the indicator variable for vehicle 
type (x2  5 0 for cars and x2  5 1 for trucks) was used to combine the two sepa-
rate regression models from Example 29.1 into one multiple regression model. 
Suppose that instead of x2, we use an indicator variable x3 that reverses the two 
types so that x3  5 1 for cars and x3  5 0 for trucks. The mean MPG is �y  5   
�0  1  �1x1  1  �2x3, where x1 is engine displacement (the value on the x axis in 
Figure 29.1) and x3 is an indicator variable to identify the vehicle type (different 
symbols in Figure 29.1). Statistical software now gives the estimated regression 
model as ⁄y 5 30.813 2 2.830x1 1 1.264x3. 

(a) Substitute the two values of the indicator variable into the estimated 
regression equation to obtain a least-squares line for each vehicle 
type. 
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29-929.2 Estimating Parameters 

(b)  How do your estimated regression lines in part (a) compare with   
the estimated regression lines provided for each vehicle type in   
Example 29.3? 

(c)  Will the regression standard error change when this new indicator vari-
able is used? Explain. 

29.5  Gas Mileage, continued. Descriptive statistics and a scatterplot for MPG 
for nonturbocharged and turbocharged vehicles from Table 29.2 accompany 
this exercise. 

(a)  Use the descriptive statistics to compute the least-squares regression line 
for predicting MPG from engine displacement for nonturbocharged 
vehicles. 

(b)  Use the descriptive statistics to compute the least-squares regression  
line for predicting MPG from engine displacement for turbocharged  
vehicles. 

(c)  Interpret the value of the slope for each of your estimated models. 

(d)  Would you be willing to use the multiple regression model with equal 
slopes to predict MPG for nonturbocharged and turbocharged vehicles? 
Explain why or why not. 

Descriptive Statistics: MPG -Turbo No, Engine Displacement-Turbo No, MPG-Turbo Yes, 
Engine Displacement-Turbo Yes 

Variable Mean StdDev 
MPG-Turbo No  24.52 5.57 
ED-Turbo No  3.211 1.175 
MPG-Turbo Yes  23.67 5.25 
ED-Turbo Yes  2.638 1.062 

Correlations: MPG-Turbo No, Engine Displacement-Turbo No 

Pearson correlation of MPG-Turbo No and ED-Turbo No = -0.865 

Correlations: MPG-Turbo Yes, Engine Displacement-Turbo Yes 

Pearson correlation of MPG-Turbo Yes and ED-Turbo Yes = -0.762 
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29.3  examples of technology 
Table 29.1 provides a compact way to display data in a textbook, but this is not the 
best way to enter your data into a statistical software package for analysis. The usual 
format for data files is that each row contains data on one individual, and each 
column contains the values of one variable. 

EXAMPLE 29.4 

The multiple regression model in Example 29.3 requires three columns. The 48 MPGs 
y for cars and trucks appear in a column labeled MPG, values of the explanatory 
variable x1 make up a column labeled Displacement, and values of the indicator vari­
able x2 make up a column labeled IndType. The first five rows of the worksheet are 
shown here. 

Row MPG Displacement IndType 

1 20 3.0 0 

2 18 3.8 0 

3 24 3.4 0 

4 31 1.5 0 

5 19 5.0 0 

To use statistical software, we need only identify the response variable MPG  
and the two explanatory variables Displacement and  IndType. Figure 29.3 shows the 
regression output from Minitab, CrunchIt!, and JMP. Each package provides param-
eter estimates, standard errors, t statistics,  P-values, the regression standard error, 
and  R2. Minitab and JMP also provide an analysis of variance table. We will digest 
this output one piece at a time: first describe the model, then look at the conditions 
needed for inference, and finally interpret the results of inference. 

Minitab 

figure 29.3 
Output from Minitab, CrunchIt!, and JMP 
for the model with parallel regression 
lines in Example 29.3. 
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Regression Analysis: MPG versus Displacement, IndType

The regression equation is

MPG = 32.1 − 2.83 Displacement − 1.26 IndType
Predictor
Constant
Displacement
IndType

Coef
32.0770
−2.8305
−1.2638

SE Coef
0.9694
0.2746
0.7722

T
33.09

−10.31
−1.64

P
0.0000
0.0000
0.109

S = 2.59915 R-Sq = 72.4% R-Sq(adj) = 71.2% 

Analysis of Variance

Source
Regression
Residual Error
Total

DF
2
45
47

SS
797.25
304.00
1101.25

MS
398.62

6.76

F
59.01

P
0.000



  

 

  

29.3  Examples of Technology 29-11 

figure 29.3CrunchIt! (Continued) 

Fitted Equation: MPG = 32.08 – 2.830 * Displacement –1.264 * IndType 

Estimate 

(Intercept) 

IndType 

r-Squared: 

Adjusted r-Squared: 

estimated sigma: 

32.08 

–2.830 

–1.264 

0.2746 

0.7722 

–10.31 

–1.637 

0.7239 

0.7117 

2.599 

<0.0001 

0.1087 

0.9694 33.09 <0.0001 

Std. Error t value Pr(>ItI) 

Displacement 

JMP
 

Summary of Fit 

RSquare 0.723948 

RSquare Adj 0.711679 

Root Mean Square Error 2.599154 

Mean of Response 22.375 

Observations (or Sum Wgts) 48 

Analysis of Variance 

Source 
Mean 

Square F RatioDF 
Sum of 

Squares 

Model 2 

Error 45 

C.Total 47 

797.2479 

304.0021 

1101.2500 

398.624 59.0064 

<.0001* 

6.756 

Lack Of Fit 

Parameter Estimates 

Term Std Error t Ratio Prob>ItI Estimate 

Intercept 32.076955 

Displacement -2.830455 

IndType -1.263754 

0.969372 

0.274646 

0.772156 -1.64 

33.09 <.0001* 

0.1087 

-10.31 <.0001* 

Prob > F 

EXAMPLE 29.5 

All three outputs give the estimated multiple regression model for predicting MPG 
(after rounding) as y⁄ 5 32.08 2 2.830x1 2 1.264x2. 

Although the labels differ, the regression standard error is provided by all three 
packages: 

Minitab: S 5 2.59915 

CrunchIt!: Sigma 5 2.599 

JMP Root mean square error 5 2.599154 
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 Variability  explained  by  model   Model  sum  of  squares 
R2 5	 5 

 

 Total  variability  in   y  Total  sum  of  squares  

 
  

For simple linear regression models, the square of the correlation coefficient (r2) 
between  y and  x measures the proportion of variation in the response variable that 
is explained by using the explanatory variable. For our multiple regression model 
with parallel regression lines, we do not have one correlation coefficient. However, 
by squaring the correlation coefficient between the observed responses y and the  
predicted responses  ⁄y we obtain the squared multiple correlation coefficient  R2. 

The analysis of variance table helps us interpret this new statistic. The sum of  
squares row in the ANOVA table breaks the total variability in the responses into  
two pieces. One piece summarizes the variability explained by the model, and the  
other piece summarizes the “leftover” variability, traditionally called “error.” That is,  

Total sum of squares 5 Model sum of squares 1 Error sum of squares 

The value of R2 is the ratio of the model sum of squares to the total sum of 
squares, so R2 tells us what proportion of the variation in the response variable y we  
explained by using the set of explanatory variables in the multiple regression model. 

Squared Multiple Correlation Coefficient  
The squared multiple correlation coefficient R2 is the square of the correlation between 
the observed responses y and the predicted responses ⁄y. It is also equal to 

R2 is almost always given with a regression model to describe the fit of the model to the data.  

 EXAMPLE 29.6

All three outputs in Figure 29.3 give the value R2  5 .7239 (rounded up to 72.4% in 
Minitab) for our multiple regression model with parallel lines in Example 29.3. That is, 
the regression model with explanatory variables Displacement  and IndType  explains 
about 72% of the variation in the response variable MPG. 

APPLY YOUR KNOWLEDGE 

29.6	  Heights and Weights for Boys and Girls.  Suppose you are designing a study  
to investigate the relationship between height and weight for boys and girls.  

(a)  Specify a model with parallel regression lines that could be used to predict 
height separately for boys and for girls. Be sure to identify all variables and 
describe all parameters in your model. 

(b)  How many columns in a worksheet would be required to fit this model 
with statistical software? Describe each column. 

29.7	  Nestling Mass and Nest Humidity.  Researchers investigated the relation-
ship between nestling mass, measured in grams, and nest humidity index, mea-
sured as the ratio of total mass of water in the nest divided by nest dry mass, for 
two different groups of great titmice parents.2 One group was exposed to fleas 
during egg laying and the other was not. Exposed parents were coded as 1, and 
unexposed parents were coded as 0. Use the output below, obtained by fitting 
a multiple regression model with parallel lines for the two groups of par-
ents, to answer the following questions. DA

TA

NESTL 
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29.4  Inference for Multiple Regression 
The output in Figure 29.3 (page 29-10) contains a considerable amount of additional 
information that deals with statistical inference for our multiple regression model 
with parallel lines. Before taking our first look at inference for multiple regression, 
we will check the conditions for inference. 

 EXAMPLE 29.7

A scatterplot and residual plots for the multiple regression model with parallel lines 
in Example 29.3 are shown in Figure 29.4. The conditions for inference are linearity, 
Normality, constant variance, and independence. We will check these conditions one 
at a time. 

LINeAR tReND:  The scatterplot in Figure 29.4(a) shows a linear pattern for the two 
vehicle types, but the pattern suggests that the lines are not parallel. So the model, 
which assumes parallel lines, may not be reasonable. The residual plot in Figure 29.4(c) 
shows a nonlinear pattern, with a high proportion of negative residuals for fitted values 
between about 18 and 23. Again, this suggests that the model may not be reasonable. 

NoRMALIty:  The histogram of the residuals in Figure 29.4(b) indicates that the 
residuals are symmetric about zero and approximately Normal. 
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Regression Analysis: Mass versus Humidity, Exposed

The regression equation is

Mass = 18.1 - 5.41 Humidity + 0.848 Exposed

Predictor Coef SE Coef T P

Constant  18.0848 0.6592 27.43 0.000

Humidity -5.411 1.377 -3.93 0.000

Exposed 0.8484 0.3587 2.37 0.024

S = 1.01583   R-Sq = 47.7%   R-Sq(adj) = 44.6%

Analysis of Variance

Source DF SS MS T P

Regression 2 32.008 16.004 15.51 0.000

Residual Error 34 35.085 1.032

Total 36 67.092

(a) Identify the estimated regression model for predicting nestling mass from 
nest humidity index for the two groups of great titmice parents.

(b) Based on your model, do you think that nestling mass was higher in nests 
of birds exposed to fleas during egg laying? Explain.

(c) What is the value of the regression standard error? Interpret this value.

(d) What is the value of the squared multiple correlation coefficient? Inter-
pret this value. 



  

 

(a) Scatterplot of MPG vs. Displacement for vehicle type
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(c) Residuals vs. the fitted values 

5.0 

2.5 

R
es

id
u

al
 

0.0 

−2.5 

−5.0 

Fitted Value 

15 20 25 30 

20 

15 

(b) 

7 

6 

5 

Displacement 

Histogram of the residuals 

29-14 

figure 29.4 
Scatterplot, histogram, and residual plot 
to check the conditions for inference in 
the model with parallel regression lines 
in Example 29.3. 

CoNStANt VARIANCe: The residual plot in Figure 29.4(c) is not a perfectly 
unstructured horizontal band of points. However, the overall pattern does suggest 
that the variability in the residuals is roughly constant, with perhaps slightly less 
variability for smaller fitted values. In general, however, this residual plot does not 
provide compelling evidence against the model’s condition that a single �  describes 
the scatter about the car line and the truck line. 

INDePeNDeNCe:  Because 48 vehicles were randomly selected, it is reasonable  
to assume that the MPGs are independent. Patterns in residual plots, such as in   
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 Variation  due  to  model   Model  mean  square 
F 5 5 

 

 Variation  due  to  error   Error  mean  square  

29.4  Inference for Multiple Regression 29-15 

Figure 29.4(c), could occur if  observations with similar responses are correlated.  
However, they can also occur because we have fit the wrong model for describing  
the relation between the response and explanatory variables. That appears to be  
the case here, so we see no compelling evidence that the assumption of indepen­
dence is violated. Also, we can rely on the fact that multiple regression models  
are robust to slight departures from the conditions and proceed with inference for  
this model.  

To this point we have concentrated on understanding the model, estimating 
parameters, and verifying the conditions for inference that are part of a regression 
model. Inference in multiple regression begins with tests that help us decide if a 
model adequately fits the data and choose between several possible models. 

The first inference for a multiple regression model examines the overall model.  
The ANOVA table summarizes the breakdown of the variability in the response  
variable. There is one row for each of the three sources of variation: Model, Error,  
and Total. Each source of variation has a number of degrees of freedom associ-
ated with it. These degrees of freedom are listed in a column. Another column  
provides a sum of squares for the three components. The sums of squares are  
divided by the degrees of freedom within each row to form a column for the mean  
sum of squares. Finally, the mean sum of squares for the model is divided by the  
mean sum of squares for error to form the F  statistic for the overall model. This F  
statistic is used to find out if all of the regression coefficients, except the intercept,  
are equal to zero. 

the F Statistic for the Regression Model 
The analysis of variance F statistic for testing the null hypotheses that all of the regres-
sion coefficients (�’s), except �0, are equal to zero has the form 

F will be large if most of the variation in the response variable (as measured by 
the total variation) can be explained by the variation predicted by the regression 
model (as measured by the model variation). 

EXAMPLE 29.8 

The regression model for the mean MPG is �y 5 �0 1 �1x1 1 �2x2, where x1 is 
labeled as Displacement and x2 is labeled as IndType on the output in Figure 29.3 
(page 29-10). The null and alternative hypotheses for the overall F test are 

H0:  �1 5 �2 5 0   (that  is   �y 5 �0)
 

Ha:   at  least  one  of   �1   and   �2   is  not   0
 

The null hypothesis H0 specifies a model, called the null model, where the response 
variable y is a constant (its mean) plus random variation. In other words, the null 
model says that x1 

null model 

and x2 together do not help predict y. 
The value of the F statistic reported in the ANOVA table in Figure 29.3 is F  5  

59.01. You should check that this value is the mean square for the model divided by 
the mean square for error. The P-value is obtained from an F distribution with 2 numer­
ator and 45 denominator degrees of freedom. Minitab reports a P-value of 0.000,  
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  x2 

that is, zero to 3 decimal places. Because the P-value is less than any reasonable 
significance level, say � 5 0.01, we reject the null hypothesis and conclude that at 
least one of the x’s helps explain the variation in the reporting percent y. 

Rejecting the null hypothesis with the F statistic tells us that at least one of our �  
parameters is not equal to zero, but it doesn’t tell us which parameters are not equal  
to zero. We turn to individual tests for each parameter to answer that question. 

Individual t  tests for Coefficients  
To test the null hypothesis that one of the �’s in a specific regression model is zero, 
compute the t statistic 

Parameter  estimate b 
t 5

  

5 
 Standard  error  of  estimate  SEb 

If the conditions for inference are met, the t distribution with  (n 2 3) degrees of 
freedom can be used to compute confidence intervals and conduct hypothesis tests 
for  �0, �1, and �2. 

EXAMPLE 29.9 

The output in Figure 29.3 (page 29-10) provides parameter estimates and standard 
errors for the coefficients �0, �1, and �2. The individual t statistic for x1 (Group) tests 
the hypotheses 

H0:  �1 5 0   (that  is   �y 5 �0 1 �2x2 )  

Ha:  �1 Þ 0 

We explicitly state the model in the null hypothesis because the bare statement H0: �1  5 0  
can be misleading. The hypothesis of interest is that in this model the coefficient of  x1 is 0.  
If the same x1 is used in a different model with different explanatory variables, the hypoth­
esis H0: �1  5 0 has a different meaning even though we would write it the same way. 

Using the CrunchIt! output, we see that the test statistic is (with round-off) 

22.830 
t 5 5 210.31 

0.2746 

The P-value is the area under a t distribution curve with 48 2 3  5 45 degrees of 
freedom below 210.31 or above 10.31. Because this value is very small, CrunchIt! 
simply reports that the P-value is ,0.0001. Look back at the hypotheses to inter­
pret this result: we have good evidence that x1 (Displacement) helps explain MPG  y  
even after we allow vehicle type (IndType) to explain MPG. 

The test statistics for the other two coefficients are 

32.08 
t 5 5 33.09   for   �

0.9694 0

21.264 
t 5 5 21.637   for   �

0.7722 2

The P-values are again obtained using the t distribution with 45 degrees of free­
dom. The P-value for �0  is so small that it is reported by CrunchIt! as being , 0.0001.  
There is good evidence that the constant term �0 is not 0. The P-value for �2 is  
0.1087, which would not be considered statistically significant. Thus, IndType  x2 does  
not add to our ability to explain MPG after we take Displacement x1 into account.  
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Example 29.9 is not completely straightforward. The overall F test tells us that  
a regression model that includes both explanatory variables together helps explain  
the variation in the response, MPG. The individual  t tests indicate that one  
explanatory variable,  Displacement, significantly improves the explanation for the  
variation in the response, MPG, after adjusting for the effect of the other explana-
tory variable, IndType. However, the explanatory variable IndType does not signifi-
cantly improve the explanation for the variation in MPG once we have adjusted for  
the effect of the explanatory variable Displacement. An important subtlety is what  
IndType tells us in our model. IndType tells us whether a model that assumes paral-
lel regression lines explains the response MPG. The t test therefore tells us that a  
model that assumes two parallel lines, one for cars and the other for trucks, does  
not significantly improve the explanation for the variation in MPG compared to  
a model that assumes a common line using the explanatory variable Displacement. 

Interpreting the results of individual t tests can get very tricky, and we will return 
to other challenging situations later. We end our discussion of the model with paral-
lel regression lines with an example that applies the four-step process. 

EXAMPLE 29.10 

StAte:  Scientists have long been interested in the question of how body mass 
(BM) determines physiological characteristics such as metabolic rate (MR). Recent 
experimental and theoretical research has confirmed the general relationship 

MR 5 �(BM)� 

between basal metabolic rate and body mass.  However, there is still considerable 
debate on whether the scaling exponent is

3

step4

DA
TA

 

BMASSLG 
 �  5 2/3 or 3/4. 

A group of researchers investigated the relationship between metabolic rate and  
body mass for tobacco hornworm caterpillars (Manduca sexta). These caterpillars  
were chosen because they maintain their shape throughout the five stages of  larval  
development, and the size of the tracheal system increases at each molt. A subset  
of the metabolic rates and body masses, after applying the logarithm transformation,  
is shown in Table 29.3 for caterpillars at the fourth and fifth stages of development.4  
Does the general relationship between metabolic rate and body mass hold for tobac­
co hornworm caterpillars? Is the relationship the same for the two different stages? 

table 29.3	   Body masses and metabolic rates, after applying 
the logarithm transformation, for caterpillars in 
the fourth and fifth stages of development 

Log of Body Mass Log of Metabolic rate Stage Stage Indicator 

20.56864	 0.90780 4 0
 

20.21753 1.24695 4 0 

0.05881	 1.51624 4 0
 

0.03342 1.42951 4 0 

0.29336	 1.56236 5 1
 

0.65562 1.92571 5 1 

0.84757	 1.83893 5 1
 

0.97658 2.03313 5 1 
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PLAN:  To investigate the relationship between MR and BM, transform the data using 
logarithms so that the linear model 

�log(MR) 5 log(�) 1 �  log(BM) 

can be fitted. Because a simple linear regression model can be used to address the first  
research question, we will leave the details for a review exercise (see Exercise 29.8).  
To check if the linear relationship is the same for both stages, we will fit a model with  
parallel regression lines. 

SoLVe:  Figure 29.5 shows a scatterplot of  the transformed metabolic rate, measured  
in microliters of oxygen per minute (�/min), against the transformed body mass mea­
sured in grams (g). The parallel regression lines on the plot, one for Stage 4 and one  
for Stage 5, illustrate the predicted model. The overall patterns for each of the two  
stages appear to be very similar. However, the measurements for Stage 5 (red points on  
the plot) are shifted up and to the right of those for Stage 4 (blue points on the plot). 

The Minitab output was obtained by regressing the response variable (the loga­
rithm of metabolic rate) on two predictor variables, x1 (the logarithm of body mass) 

figure 29.5 
Scatterplot for the predicted model  
using parallel regression lines, for  
Example 29.10. 

Minitab 
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Regression Analysis: y versus x1, x2
The regression equation is

y = 1.24 + 0.698 x
1
 + 0.147 x

2

Predictor Coef SE Coef T P
Constant 1.23917 0.01122 110.44 0.000

x
1
 0.69828 0.02628 26.57 0.000

x
2
 0.14680 0.02658 5.52 0.000

S = 0.100121 R-Sq = 94.5%  R-Sq(adj) = 94.5%

Analysis of Variance

Source DF SS MS F P
Regression 2 35.784 17.892 1784.89 0.000
Residual Error 206 2.065 0.010
Total 208 37.849



(a) Residuals versus the Fitted Values 
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and an indicator variable x2, which is 1 for Stage 5 and 0 for Stage 4. Our multiple 
regression model is �y  5  �0  1  �1x1  1  �1x2. 

The estimated multiple regression model is 

y⁄ 5 1.24 1 0.698x1 1 0.147x2 

Substituting the values of 0 and 1 for x2, we obtain the parallel regression lines 

y⁄ 5 1.24 1 0.698x1, for Stage 4 (x2 5 0) 

y⁄ 5 1.387 1 0.698x1, for Stage 5 (x2 5 1) 

To check the conditions for inference we notice that the scatterplot in Figure 29.5 
seems to show a parallel linear pattern, so the model makes sense. The residual plots 
in Figure 29.6 are used to check the other conditions. The histogram in Figure 29.6(b) 

figure 29.6 
Residual plots for the model with parallel   
regression lines in Example 29.10. 
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indicates that the residuals are approximately symmetric about zero, so the Normality  
condition is satisfied. The plot of the residuals versus the fitted values in Figure 29.6(a)   
shows some trends that concerned the researchers. In particular, it appears that a  
model with some curvature might do a slightly better job because the residuals were  
always negative for the lowest body mass measurements within each stage. They were  
also slightly concerned about the constant-variance assumption. The plot of the residu­
als versus the data order in Figure 29.6(c) shows no systematic change of spread  
about the model. However, there is a slight curvilinear or “U-shaped” pattern, perhaps  
suggesting some structure in the process with respect to order. 

Because the researchers were interested in comparing their results for caterpillars  
with the general relationship used by other scientists for a variety of other animals and  
insects, they decided to proceed with statistical inference for the model parameters.  
The overall F statistic F 5 1784.89 and corresponding P-value P  5 0.000 clearly  
indicate that at least one of the parameters in the model is not equal to zero. Because  
the t  statistics 110.44, 26.57, and 5.52 all have reported P-values of  zero, we  
conclude that all three parameters �0, �1, and �2 are significantly different from zero. 

CoNCLuDe:  The researchers were pleased that they were able to explain 94.5% 
of  the variation in the logarithm of  the metabolic rates by using a regression model 
with two parallel lines, one for each stage. The general form of the linear relationship 
is the same for both stages, with overall slope b1  5 0.698. The major difference in 
the relationship for the two stages is indicated by an upward shift in the line for the 
larger caterpillars, which is estimated by b2  5 0.147. 

APPLY YOUR KNOWLEDGE 

29.8  Metabolic Rate and Body Mass for Caterpillars.  Does the general rela-
tionship between metabolic rate and body mass described in Example 29.10 hold  
for tobacco hornworm caterpillars? The Minitab output (see below) was obtained  
by regressing the response variable y  5 log(MR) on x1  5 log(BM) for the data. 

(a)  Use the regression equation from the Minitab output to estimate and in 
the general relationship MR 5  �(BM)�, which is the same as y  5 log �x1. 
The predicted model is ⁄ y 5  a  1  bx1, so that a estimates log(�) and  b esti-
mates � in the original model. 

Minitab 
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(b)  Residual plots for the linear regression model �y  5  �  1  �x1 are shown in 
the accompanying charts. Do you think that the conditions for inference 
are satisfied? 

(c)  Identify the percent of variation in y that is explained by using linear 
regression with the explanatory variable x1. 
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Regression Analysis: y versus x1

The regression equation is

log(MR) = 1.28 + 0.822 log(BM)

Predictor Coef SE Coef T P

Constant 1.28071 0.00890 143.88 0.000

x
1
 0.82179 0.01477 55.66 0.000

S = 0.107019 R-Sq = 93.7% R-Sq(adj) = 93.7%
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(d) Even if you noticed some departures from the conditions for inference, 
the researchers were interested in making inferences because this model is 
well known in the field and has been used for a variety of different insects 
and animals. Find a 95% confidence interval for the slope parameter �. 
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(e) Are the values �  5 2/3 and �  5 3/4 contained in your confidence interval? 

(f) Use appropriate values from the Minitab output to test the claim that 
�  5 2/3. 

(g) Use appropriate values from the Minitab output to test the claim that 
�  5 3/4. 

29.9	  Metabolic Rate and Body Mass for Caterpillars.  Use the output pro-
vided in Example 29.10 (page 29-17) to answer the questions below. 

(a) Find a 95% confidence interval for the slope parameter � for caterpillars 
during Stage 4. 

(b) If you were asked to report a confidence interval for the slope parameter 
� for caterpillars during Stage 5, would you report the same interval that 
you calculated in part (a)? Explain why or why not. 

(c) Are the values �  5 2/3 and 3/4 contained in your confidence interval 
from part (a)? 

(d) How does your confidence interval in part (a) compare with the confi-
dence interval you computed in part (d) of Exercise 29.8? 

(e) Use appropriate values from the output to test the claim that �  5 2/3. 

(f) Use appropriate values from the output to test the claim that �  5 3/4. 

29.10  MPG.	  Use the output in Figure 29.3 (page 29-10) to answer the following 
questions. 

(a) Is the value of the regression standard error the same on all three sets of 
output? Interpret this value. 

(b) The value of the squared multiple correlation coefficient is reported as 
72.4% by Minitab, 0.7239 by CrunchIt!, and 0.723948 by JMP. Interpret 
the value of R2 for this model. 

(c) Is the value of the estimate of �1, the coefficient for the explanatory vari-
able Displacement, the same for all three sets of output? 

(d) Give a 98% confidence interval for the value of the parameter �1. (Hint: 
Remember the general form for t confidence intervals.) 

(e) Is there a significant difference in the intercepts for the two regression 
models (the one for cars only and the one for trucks only)? 

29.5 Interaction 
Examples with two parallel linear patterns for two values of an indicator variable 
are rather rare. It’s more common to see two linear patterns that are not parallel, as 
appeared to be the case for Example 29.7 (page 29-13). To write a regression model 

interaction 	 for this setting, we need an idea that is new and important: interaction between 
two explanatory variables. Interaction between variables x1  and  x2  appears as a prod-
uct term x1x2 in the model. The product term means that the relationship between the 
mean response and one explanatory variable x1 changes when we change the value of the 
other explanatory variable x2. Here is an example. 

EXAMPLE 29.11 

StAte: In Example 4.4 (text page 106), you discovered that states with a higher 
percent of high school graduates taking the SAT (rather than the ACT) tend to have 
lower mean SAT scores. You saw that states fall into two distinct clusters, one for 

step4
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states with 36% or more of high school graduates taking the SAT and the other for 
states with fewer than 20% of high school graduates taking the SAT. Is a model with 
two regression lines helpful in predicting the SAT Math score for the two clusters of 

DA
TA

 

MATHSAT2states?
 

PLAN: Fit and evaluate a model with two regression lines for predicting SAT Math 

score.
 

Let’s see how adding an interaction term allows two lines that are not parallel. 
Consider the model 

�y 5 �0 1 �1x1 1 �2x2 1 �3x1x2 

in which y is the SAT Math score, x1 is the percent of high school students taking 
the SAT, x2 is an indicator variable that is 1 if the percent of high school graduates 
taking the SAT is less than 20% and 0 otherwise, and x1x2 is the interaction term. For 
states with 36% or more of students taking the SAT, x2  5 0 and the model becomes 

�y 5 �0 1 �1x1 

For states with less than 20% of the students taking the SAT, x2  5 1 and the model is 

�y 5 �0 1 �1x1 1 �2 1 �3x1 

5 (�0 1 �2) 1 (�1 1 �3)x1 

A careful look allows us to interpret all four parameters: �0 and �1 are the intercept 
and slope for states with 36% or more of students taking the SAT. The parameters 
�2 and �3 indicate the fixed change in the intercept and slope, respectively, for states 
with less than 20% of students taking the SAT. Be careful not to interpret �2 as the 
intercept and �3 as the slope for states with a low percent of students taking the 
SAT. The indicator variable allows us to change the intercept as we did before, and 
the new interaction term allows us to change the slope. 

We have n observations on an explanatory variable x1, an indicator variable x2 coded 
as 0 for some individuals and as 1 for other individuals, and a response variable y. 
The mean response �y is a linear function of the four parameters �0, �1, �2, and �3: 

�y 5 �0 1 �1x1 1 �2x2 1 �3x1x2 

EXAMPLE 29.12 

SoLVe: Figure 29.7 shows the two regression lines, one for each cluster, for pre­
dicting the mean SAT Math score for each state. The fitted model, as shown by the 
two regression lines in this case, appears to provide a good visual summary for the 
two clusters. 

Figure 29.8 provides the regression output from Minitab. By substituting 0 and 1 
for the indicator variable x2, we can easily obtain the two estimated regression lines. 
The estimated regression lines are y⁄ 5 561.02 2 0.867x1 for states with at least 
36% of high school graduates taking the SAT and 

y⁄ 5 (561.02 1 41.69) 2 (0.867 1 2.751)x1 

5 602.71 2 3.618x1 

for states with less than 20% of high school graduates taking the SAT. 
The overall F statistic 76.15 and corresponding P-value in the ANOVA table clearly 

indicate that at least one of the regression coefficients is significantly different from 

step4
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zero. Thus, at least one of the two explanatory variables or the interaction of both is 
helpful in predicting the state mean SAT Math scores. 

Looking at the individual t tests for the coefficients, we notice that all are signifi­
cantly different from zero at � 5 0.05, so there is a clear ACT/SAT state difference. 

Residual plots (not shown) indicate no major problems with the Normality or  
constant-variance assumptions. 

CoNCLuDe: The model with two regression lines, one for each cluster, explains 
approximately 82.9% of the variation in the mean SAT Math scores. This model pro­
vides a better fit than the simple linear regression model that predicts mean SAT Math 
score from just the percent of high school graduates who take the SAT. 
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figure 29.7 
Model with two regression lines for   
predicting mean SAT Math score in  
each state based on the percent of  
high school graduates who take the  
SAT, for Example 29.12. 

figure 29.8 
Output from Minitab for the model with  
two regression lines in Example 29.12. 

Even though we developed models without interaction first, it is best in practice to  
consider models with interaction terms before going to the more restrictive model with par-
allel regression lines. If you begin your model fitting with the more restrictive model with  

parallel regression lines, then you are basically assuming that there is no interaction. We won’t  
discuss model selection formally, but deciding which model to use is an important skill. 
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Regression Analysis: y versus x1, x2, x1*x2

The regression equation is

y = 561 – 0.867x
1
 + 41.69x

2
 – 2.75x

1
*x

2

Predictor
Constant

x
1
x
2
x
1
*x

2

Coef
561.02
-0.8668

41.69
-2.7511

SE Coef
18.24
0.2481
19.67
0.9520

T
30.75
-3.49
2.12
-2.89

P
0.000
0.001
0.039
0.006

Source
Regression
Residual Error
Total

DF
3
47
50

SS
92560
19042
111602

MS
30853

405

F
76.15

P
0.000

S = 20.1285   R-Sq = 82.9%   R-Sq(adj) = 81.8%

Analysis of Variance



  

 29.6 A Model with Two Regression Lines 
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EXAMPLE 29.13 

Let’s compare two separate models for predicting SAT Math score y using the 
explanatory variables x1, x2, and x1x2 described in Example 29.11. 

• Model 1: A simple linear regression model that ignores the two clusters of states. 

•	 Model 2: The two-line model from Example 29.12. 

The predicted response y⁄, regression standard error s, and squared multiple correla­
tion coefficient R2 for the three models are 

Model 1: y⁄ 5 586.05 2 1.207x1              s  5 21.48 R2  5 0.797 

Model 2: y⁄ 5 561.02 2 0.867x1 1 41.69x2 2 2.751x1x2    s  5 20.13 R2  5 0.829  

We have already seen the fitted lines for Model 2 in Figure 29.7. The fitted line for 
Model 1 appears in Figure 29.9. The blue line shows the simple linear regression model. 
Comparing Models 1 and 2, we find that Model 2 has the smaller s and the larger R2,  
although the differences are not large. We conclude that the model with two separate 
regression lines provides a somewhat better fit than the simple linear regression model. 

625 
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525 

500 

475 
figure 29.9 
Scatterplot with two different models 
for predicting mean SAT Math score 
in each state based on the percent of 
high school graduates who take the 

450 

Percent of graduates taking the SAT 
SAT, for Example 29.13. 
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APPLY YOUR KNOWLEDGE 

29.11  Bird Colonies.	  Suppose that the number y of new birds that join a colony 
this year has a straight-line relationship with the percent x1 of returning birds 
in colonies of two different bird species. An indicator variable shows which 
species we observe: x2  5 0 for one and x2  5 1 for the other. Write a population 
regression model that allows different linear models for the two different bird 
species. Explain in words what each � in your model means. 

29.12  How Fast Do Icicles Grow?	 We have data on the growth of icicles starting 
at length 10 centimeters (cm) and at length 20 cm. Suppose icicles that start at 
10 cm grow at a rate of 0.15 cm per minute and icicles that start at 20 cm grow 
at a rate of 0.16 cm per minute. Give a regression model that describes how 
mean length changes with time x1 and starting length x2. Use numbers, not 
symbols, for the �’s in your model. 

29.13  touring Battlefields.	  Suppose that buses complete tours at an average rate 
of 20 miles per hour and that self-guided cars complete tours at an average rate 
of 28 miles per hour. Give a regression model that describes how mean time 
to complete a tour changes with distance x1 and mode of transportation x2. 
To be realistic, we want the mean time to complete the tour to be zero for both 
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Men Women 

Record Time  Record Time  Record Time 
Year (seconds) Year (seconds) Year (seconds) 

1912 1880.8 1963 1695.6 1967 2286.4 

1921 1840.2 1965 1659.3 1970 2130.5 

1924 1835.4 1972 1658.4 1975 2100.4 

1924 1823.2 1973 1650.8 1975 2041.4 

1924 1806.2 1977 1650.5 1977 1995.1 

1937 1805.6 1978 1642.4 1979 1972.5 

1938 1802.0 1984 1633.8 1981 1950.8 

1939 1792.6 1989 1628.2 1981 1937.2 

1944 1775.4 1993 1627.9 1982 1895.2 

1949 1768.2 1993 1627.9 1983 1895.0 

1949 1767.2 1994 1612.2 1983 1887.6 

1949 1761.2 1995 1603.5 1984 1873.8 

1950 1742.6 1996 1598.1 1985 1859.4 

1954 1734.2 1997 1587.8 1993 1771.8 

1956 1722.8 1998 1582.7 2016 1757.5 

1956 1710.4 2004 1580.4 

1960 1698.8 2005 1577.5 

1962 1698.2 

29-26 

modes of transportation when the distance x1  5 0. Use numbers, not symbols,  
for the �’s in your model. 

29.14  Revisiting State SAt  Scores.  We have examined the relationship between  
SAT Math scores and the percent of high school graduates who take the SAT. We  
could also fit a model with two regression lines, one for each cluster, for predicting  
SAT Writing score. Use software to answer the following questions. DA

TA WSAT 

(a) What is the estimated regression line for predicting mean SAT Writing score  
for states with more than half of high school graduates taking the SAT? 

(b)  What is the estimated regression line for predicting mean SAT Writing score  
for states with at most half of high school graduates taking the SAT? 

(c)  Interpret the squared multiple correlation. 

(d)  A t distribution was used to compute the P-values provided after each  t-value   
in the table. How many degrees of freedom does that t distribution have? 

(e)  Identify the value you would use to estimate the standard deviation �.  

(f)  Create a scatterplot containing the estimated regression lines for each cluster. 

(g)  Plot the residuals against the fitted values. Does this plot indicate any seri-
ous problems with the conditions for inference? 

(h)  Use a visual display to check the Normality condition for the residuals. 
Do you think the residuals follow a Normal distribution? 

29.15  World Record Running times.  The accompanying table shows the progress 
of world record times (in seconds) for the 10,000-meter run for both men and 
women. DA

TA RECORD 

 

1953 1741.6 1997 1591.3 1986 1813.7 
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(a)  Make a scatterplot of world record time against year, using separate 
symbols for men and women. Describe the pattern for each gender. Then 
compare the progress of men and women. 

(b)  Fit the model with two regression lines, one for women and one for men, 
and identify the estimated regression lines. 

(c)  Women began running this long distance later than men, so we might 
expect their improvement to be more rapid. Moreover, it is often said that 
men have little advantage over women in distance running as opposed to 
sprints, where muscular strength plays a greater role. Do the data appear 
to support these claims? 

29.16  MPG Revisited.  In Example 29.9 (page 29-16), we found that type of motor  
vehicle was not statistically significant for predicting MPG in a model that al-
ready included Displacement. However, we noted that the model in Example 
29.9 assumed parallel regression lines for cars and trucks, and Figure 29.4(a) 
suggested that the regression lines are not parallel. DA

TA MPG2 

(a)  Use software to fit a model with two regression lines, one for cars and one  
for trucks. What is the overall F statistic, standard error s, and R2? How  
do s and R2 compare with the values for the model that assumes parallel  
regression lines? (See Examples 29.5 and 29.6.)  

(b)  Use an individual t test to determine if there is a significant interaction 
effect in a model that includes Dispersion and IndType. What do you 
conclude? 

29.17  Heights and Weights for Boys and Girls.  Suppose that you are designing 
a study to investigate the relationship between height and weight for boys and 
girls. Specify a model with two regression lines that could be used to predict 
height separately for boys and for girls. Be sure to identify all variables and 
describe all parameters in your model. 

29.7  the General Multiple Linear Regression Model 
We have seen in a simple but useful case how adding another explanatory vari-
able can fit patterns more complex than the single straight line of simple linear  
regression. Our examples to this point included two explanatory variables: a  
quantitative variable and an indicator variable x2. Some of our models added  
an interaction term x1x2. Now we want to allow any number of explanatory  
variables, each of which can be either quantitative or an indicator variable.  
Here is a statement of the general model that includes the conditions needed  
for inference. 

the Multiple Linear Regression Model 
We have observations on n individuals. Each observation consists of values of p explana-
tory variables x1, x2, . . . , xp  and a response variable y. Our goal is to study or predict the 
behavior of y given the values of the explanatory variables. 

•	 For any set of fixed values of the explanatory variables, the response y varies 
according to a Normal distribution. Repeated responses y are independent of each 
other. 
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•	 The mean response �y has a linear relationship given by the population regression 
model 

�y 5 �0 1 �1x1 1 �2x2 1 Á 1 �pxp 

The �’s are unknown parameters. 

•	 The standard deviation of y (call it �) is the same for all values of the explanatory 
variables. The value of � is unknown. 

This model has p  1  2 parameters that we must estimate from data: the coeffi-
cients �0, �1, Á ,  �p and the standard deviation. 

This is multiple regression because there is more than one explanatory vari-
able. Some of the x’s in the model may be interaction terms, products of two 
explanatory variables. Others may be squares or higher powers of quantitative 
explanatory variables. So the model can describe quite general relationships.5 

The main restriction is that the model is linear regression because each term is 
a constant multiple �x. Here are some examples that illustrate the flexibility of 
multiple regression models. 

EXAMPLE 29.14 

Suppose we have n observations on two explanatory variables x1 and x2 and a 
response variable y. Our goal is predict the behavior of y for given values of x1 and x2. 
The mean response is given by 

�y 5 �0 1 �1x1 1 �2x2 1 �3x1x2 

Because there are two explanatory variables x1 and x2, we can graph the relation­
ship of y with x1 and x2 in three dimensions. Figure 29.10 shows y vertically above 
a plane in which x1 and x2 take their values. The result is a surface in space. Figure 
29.10(a) shows the easiest extension of our simple linear regression model from 
Chapter 25. Instead of fitting a line to the data, we are now fitting a plane. This figure 
shows the plane �y  5  x1  1  x2. The plane is a population model, and when we collect 
data on our explanatory variables, we will see vertical deviations from the points to 
the plane. The goal of least-squares regression is to minimize the vertical distances 
from the points to the plane. 

Figure 29.10(b) adds a slight twist. The twist is created by the interaction term 
in the model. The mean response in Figure 29.10(b) is �y  5  2x1  1  2x2  1  10x1x2.  
The coefficients in front of the explanatory variables indicate part of the effect of 
a one-unit change on the mean response for each one-unit change in one of the 
explanatory variables. But the interpretation of the effect of a one-unit change in the 
mean response for one variable also depends on the other variable. For example, if 
x2  5 1, the mean response increases by 12 (�y  5 2 1 12x1) for a one-unit increase 
in x1. However, when x2  5 2, the mean response increases by 22 (�y  5 4 1 22x1) 

for a one-unit increase in x1. To interpret the parameters in multiple regression 
models, we think about the impact of one variable on the mean response while 
all of  the other variables are held fixed. 

Another way to think about possible multiple regression models for two explana­
tory variables is to take a piece of paper and hold it as shown in Figure 29.10(a). 
Now begin moving the corners of the paper to get different surfaces. You see that a 
wide variety of surfaces are possible with only two explanatory variables. 

Another possible response surface is shown in Figure 29.10(c). A quick inspection 
of this figure reveals some curvature in the mean response. To get a curved response 
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(a) 

x2 

(b) 

MeanMean responseresponse mymy 

x2 

x1 x1 

(c) 

x1 

x2 

Mean 
response 
my 

surface, add terms for the squares or higher powers of the explanatory variables. 
The mean response in Figure 29.10(c) is �y 5 2000 2 20x2

1 2 2x1 2 3x2 
2 1 5x2  1  

10x1x2. This model has two linear terms, two quadratic terms, and one interaction 
term. Models of this form are known as second-order polynomial regression models. 

figure 29.10 
Some possible surfaces for multiple 
regression models. (a) Shows the 
plane μy  5 x1 1 x2. (b) Shows the 
surface μy 5  2x1 1  2x2 1 10x1x2.  
(c) Shows the surface μy  5  2000   
2 20x2 

1 2 2x1  2 3x2 
2 + 5x2 + 10x1x2. 

Software fits the model just as before, estimating the �’s by the least-squares 
method and estimating � by the regression standard error based on the residu-
als. Nothing essential is new, though you will notice different degrees of freedom 
depending on the number of terms in the model. 

EXAMPLE 29.15 

If there is a quadratic relationship between a quantitative variable y and another 
quantitative variable x1, the mean response is given by 

�y 5 �0 1 �1x1 1 �2x2
1 DIAMOND 

DA
TA

 

A young couple are shopping for a diamond, so they are interested in learning more 
about how these gems are priced. They have heard about the 4 Cs: carat, color, cut, and 
clarity. Is there is a relationship between these diamond characteristics and the price? 
Table 29.4 shows records for the first 10 diamonds in a large database.6 The complete 
database contains 351 diamonds. The variables include Carat, Color, Clarity, the Depth 
of the cut, the price per carat Price/Ct, and the Total Price. Because the young couple 
are primarily interested in the price of a diamond, they decide to begin by examining 
the relationship between Total Price and Carat. Figure 29.11 shows a scatterplot of 
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table 29.4 Subset of diamond database 

Carat Color Clarity Depth Price/Carat Total Price 

1.08 E VS1 68.6 $6693.3 $7228.8
 

0.31 F VVS1 61.9 3159.0 979.3 

0.31 H VS1 62.1 1755.0 544.1
 

0.32 F VVS1 60.8 3159.0 1010.9 

0.33 D IF 60.8 4758.8 1570.4
 

0.33 G VVS1 61.5 2895.8 955.6 

0.35 F VS1 62.5 2457.0 860.0
 

0.35 F VS1 62.3 2457.0 860.0 

0.37 F VVS1 61.4 3402.0 1258.7
 

0.38 D IF 60.0 5062.5 1923.8 

©
 T

om
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ril
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C
or
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Total Price versus Carat, along with the estimated quadratic regression model. Using 
the quadratic regression model, the couple estimate the mean price of a diamond to be 

⁄�Price 5 2522.7 1 2386Carat 1 4498Carat2 

The couple are happy because they can explain 92.6% of the variation in the 
total price of the diamonds in the database using this quadratic regression model. 
However, they are concerned because they used explanatory variables that are not 
independent. An explanatory variable and its square are obviously related to one 
another. The correlation between Carat (x1) and Carat2(x2

1) is 0.952. 
The residual plots in Figure 29.12 give more reasons for the couple to be con­

cerned. The histogram in Figure 29.12(b) shows that the residuals are roughly sym­
metric about zero, but the Normal distribution may not be appropriate because of the 
unusually large and small residuals. The scatterplot of the residuals against the fitted 
values in Figure 29.12(a) indicates that the variance increases as the fitted value 
increases up to approximately $30,000. Finally, the plot of the residuals against order 
in Figure 29.12(c) does not reveal any troubling pattern, but it does clearly illustrate 
several unusually large and small residuals. 

Having noticed all of the problems with the residual plots, the couple step back 
and reconsider their objective. They were interested in learning about the relationship 
between the total price of a diamond and one particular characteristic, carat. The 
quadratic regression model clearly provides useful information to them even though 
they will not use this model to make inferences. You will consider additional models 
to help the couple learn more about diamond pricing in the chapter exercises. 

60,000 

50,000 

To
ta

l p
ri

ce
 (
$)

40,000 

30,000 

20,000 

10,000 

The estimated 
quadratic regression model 

S 2126.76 
R-Sq 92.6% 

figure 29.11 0 
A scatterplot of Total Price versus Carat, 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
for Example 29.15. The estimated qua-

Caratdratic regression model is also shown. 
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figure 29.12 
(a)	 Residuals versus the Fitted Values Residual plots for the quadratic regres­

sion model, Example 29.15. 
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(b)	 Histogram of the Residuals 
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(c)	 Residuals versus the Order of the Data 
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APPLY YOUR KNOWLEDGE 

29.18 Nest Humidity and Fleas.	 In the setting of Exercise 29.7 (page 29-12), research-
ers showed that the square root of the number of adult fleas y has a quadratic rela-
tionship with the nest humidity index x. Specify the population regression model 
for this situation. 
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29.19  Diamonds.  Specify the population regression model for predicting the total  
price of a diamond from two interacting variables, Carat and  Depth (see  
Example 29.15 on page 29-29). 

29.20  Radioactive Decay.  An experiment was conducted using a Geiger-Mueller   
tube in a physics lab. Geiger-Mueller tubes respond to gamma rays and to  
beta particles (electrons). A pulse that corresponds to each detection of a  
decay product is produced, and these pulses were counted using a   
computer-based nuclear counting board. Elapsed time (in seconds) and  
29–33 counts of pulses for a short-lived unstable isotope of silver are shown  
in Table 29.5.7 

table 29.5   Counts of pulses over time for an unstable isotope of silver 

 DA
TA

GAMMA 

Seconds Count Seconds Count Seconds Count Seconds Count 

20  4611 330 288  640 86 950 13 

30  3727  340  331  650  71  960 24 

40  3071 350 298 660 77  970 15 

50 2587 360 274  670 64 980 13 

60 2141  370  289 680 58 990 21 

70  1816  380  253  690 48 1000 23 

80 1577  390 235  700 58 1010 16 

90 1421  400  220 710  57  1020 17 

100 1244  410  216  720  55 1030 19 

110  1167  420  219  730  50  1040 14 

120 992  430  200  740  54  1050 18 

130  927  440 170 750  53 1060 10 

140 833  450  185  760 38  1070 13 

150  811  460  174  770  35  1080 10 

160  767  470  163 780  38  1090 11 

170  658  480  178  790  28  1100 21 

180  656  490  144  800  34  1110  10 

190 651  500 147  810  34  1120 10 

200 582 510   154 820 32  1130 12 

210  530  520  138  830  30  1140 12 

220 516  530  140 840  21  1150 11 

230 483 540 121  850  33  1160 8 

240 500  550  134  860  19  1170 12 

250 508  560 105 870 25  1180 13 

260 478 570 108 880 30 1190 11 

270 425 580  83  890  22  1200 14 

280 441  590 104  900  23 1210 11 

290 388 600 95 910  28 1220 10 

300 382 610  68 920 28 1230 12 

310 365 620 85 930 28 1240 8 

320 349 630 83 940 19 1250 11 
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(a) Create a scatterplot of the counts versus time and describe the pattern. 

(b) Because some curvature is apparent in the scatterplot, you might want to 
consider the quadratic model for predicting counts based on time. Fit the 
quadratic model and identify the estimated mean response. 

(c) Add the estimated mean response to your scatterplot. Would you recom-
mend the use of the quadratic model for predicting radioactive decay in 
this situation? Explain. 

(d) Transform the counts using the natural logarithm and create a scatterplot 
of the transformed variable versus time. 

(e) Fit a simple linear regression model using the natural logarithm of the 
counts. Provide the estimated regression line, a scatterplot with the esti-
mated regression line, and appropriate residual plots. 

(f)	 Does the simple linear regression model for the transformed counts fit the 
data better than the quadratic regression model? Explain. 

29.8 the Woes of Regression Coefficients 
When we start to explore models with several explanatory variables, we quickly 
meet the big new idea of multiple regression in practice: the relationship between the 

response y and any one explanatory variable can change greatly depending on what 
other explanatory variables are present in the model. Let’s try to understand why 
this can happen before we illustrate the idea with data. 

EXAMPLE 29.16 

Let y denote the total amount of change in a person’s pocket or purse. Suppose you 
are interested in modeling this response variable based on two explanatory variables. 
The first explanatory variable x1 is the total number of coins in a person’s pocket or 
purse, and the second explanatory variable x2 is the total number of pennies, nickels, 
and dimes. Both of these explanatory variables will be positively correlated with the 
total amount of change in a person pocket or purse. 

Regress y on x2 alone: we expect the coefficient of x2 to be positive because the 
money amount y generally goes up when your pocket has more pennies, nickels, and 
dimes in it. 

Regress y on both x1 and x2: for any fixed x1, larger values of x2 mean fewer quar­
ters in the overall count of coins x1, and this means that the money amount y often 
gets smaller as x2 gets larger. So when we add x1 to the model, the coefficient of x2 

not only changes but may change sign from positive to negative. 

The reason for the behavior in Example 29.16 is that the two explanatory 
variables x1 and x2 are related to each other as well as to the response y. When 
the explanatory variables are correlated, multiple regression models can pro-
duce some very striking and sometimes counterintuitive results, so we must 
check carefully for correlation among our potential set of explanatory variables. 

For an example with data, let’s return to the setting described in Example 29.11 
(page 29-22), where we are interested in predicting state average SAT Math scores y 
based on the percent x1 of graduates in each state who take the SAT. 
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EXAMPLE 29.17 

Exercise 4.49 (page 126) provides data on average high school teacher salaries and  
average Mathematics SAT scores for each of the 50 states. The top of Figure 29.13 gives  
part of the regression output for fitting a simple linear regression for predicting average  
Mathematics SAT score (y) from average high school teacher salary (x3, in tens of thou­
sands of dollars). The estimated model is (with rounding) y⁄ = 623.94 2 15.92x3. The  
individual t statistic is t = 22.27 and corresponding P-value 0.0277 indicate the slope is  
not equal to 0. The fitted model suggests that for each increase in average teacher salaries  
of $10,000, predicted average Mathematics SAT scores decrease by about 16 points.  

When we add the percent taking the exam in each state (x1), the output at the 
bottom of Figure 29.13 shows that the individual t statistic for x3 is t = 2.79 and 
the P-value is 0.0075. The coefficient b3 for x3 is statistically significant but is 10.07. 
The fitted model now suggests that for each increase in average teacher salaries of  
$10,000, predicted average Mathematics SAT scores increase by about 10 points, 
holding the percentage taking constant. So, depending on the other variables pres­
ent in the model, predicted average Mathematics SAT scores can either decrease or 
increase for each $10,000 increase in average teacher salaries! 

figure 29.13 
Partial regression output for a simple linear regression model and  
a multiple regression model, for Example 29.17. 

APPLY YOUR KNOWLEDGE 

29.21  Predicting SAt Writing Scores.  We have been developing models for SAT 
Math scores for two different clusters of states. Use the SAT data to evaluate 
similar models for SAT Writing scores. TA

DA WSAT 

(a)  Find the least-squares line for predicting SAT Writing scores from percent 
taking the exam. 

(b)  Plot SAT Writing score versus percent taking the exam, and add the least-
squares line to your plot. 

(c)  Are you happy with the fit of your model? Comment on the value of R2  
and the residual plots. 

(d)  Fit a model, using indicator variables, with two regression lines. Identify 
the two lines, parameter estimates, t statistics, and corresponding P-values. 
Does this model improve the fit? 

29.22  Body Fat for Men.  You are interested in predicting the amount of body fat 
on a man y using the explanatory variables waist size x1 and height x2. 

(a)  Do you think body fat y and waist size x1 are positively correlated? Explain. 
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Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 623.93709 39.11068 15.95 <.0001*
x3 −15.91856 7.017035 −2.27 0.0277*

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 536.15575 18.41623 29.11 <.0001*
x1 −1.340452 0.094516 −14.18 <.0001*
x3 10.07449 3.611546 2.79 0.0075*



  

 29.9 A Case Study for Multiple Regression 

 

 

   

 

  

 
  

 

Variable Description 

 Amount The net dollar amount spent by customers who made a purchase from 
this retailer 

 Recency The number of months since the last purchase 

 Freq12 The number of purchases in the last 12 months 

 Dollar12 The dollar amount of purchases in the last 12 months 

 Freq24 The number of purchases in the last 24 months 

 Dollar24 The dollar amount of purchases in the last 24 months 

 Card  An indicator variable: Card 5 1 for customers who have a private label 
 credit card with the retailer, and Card 5 0 for those who do not 
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(b) For a fixed waist size, height x2 is negatively correlated with body fat y. 
Explain why. 

(c) The slope of the simple linear regression line for predicting body fat from 
height for a sample of men is almost 0—say, 0.13. Knowing a man’s height 
does not tell you much about his body fat. Do you think this parameter 
estimate would become negative if a multiple regression model with 
height x2 and waist size x1 was used to predict body fat? Explain. 

29.23 Combining Relationships.	 Suppose that x1 5 2x2 2 4 so that x1 and x2 are 
positively correlated. Let y 5 3x2 1 4 so that y and x2 are positively correlated. 

(a) Use the relationship between x1 and x2 to find the linear relationship 
between y and x1. Are y and x1 positively correlated? 

(b) Add the equations x1 5 2x2 2 4 and y 5 3x2 1 4 together and solve for y 
to obtain an equation relating y to both x1 and x2. Are the coefficients of 
both x’s positive? Combining explanatory variables that are correlated can 
produce surprising results. 

29.9 A Case Study for Multiple Regression 
We will now look at a set of data with several explanatory variables to illustrate the 
process of arriving at a suitable multiple regression model. In the next section, we 
will use the model we have chosen for inference, including predicting the response 
variable. 

To build a multiple regression model, first examine the data for outliers and 
other deviations that might unduly influence your conclusions. Next, use descrip-
tive statistics, especially correlations, to get an idea of which explanatory variables 
may be most helpful in explaining the response. Fit several models using combina-
tions of these variables, paying attention to the individual t statistics to see if any 
variables contribute little in any particular model. Always think about the real-world 
setting of your data, and use common sense as part of the process. 

EXAMPLE 29.18 

The data provided in Table 29.6 represent a random sample of 60 customers from a 
large clothing retailer.8 The manager of the store is interested in predicting how much 
a customer will spend on his or her next purchase. 

Our goal is to find a regression model for predicting the amount of  a purchase 
from the available explanatory variables. Here is a short description of  each 
variable. 
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ID Amount Recency Freq12 Dollar12 Freq24 Dollar 24 Card 

1 0 22 0 0 3 400 0

2 0 30 0 0 0 0 0 

3 0 24 0 0 1 250 0

4 30 6 3 140 4 225 0 

5 33 12 1 50 1 50 0 

6 35 48 0 0 0 0 0 

7 35 5 5 450 6 415 0
 

8 39 2 5 245 12 661 1 

9 40 24 0 0 1 225 0
 

10 45 3 6 403 8 1138 0 

11 48 6 3 155 4 262 0

12 50 12 1 42 7 290 0 

13 50 5 2 100 8 700 1
 

14 50 8 3 144 4 202 0 

15 50 1 10 562 13 595 1

16 50 2 3 166 4 308 0 

17 50 4 4 228 4 228 0
 

18 50 5 5 322 7 717 1 

19 55 13 0 0 6 1050 0
 

20 55 6 3 244 7 811 0 

21 57 20 0 0 2 140 0
 

22 58 3 4 200 4 818 1 

23 60 12 1 70 2 150 0
 

24 60 3 4 256 7 468 0 

25 62 12 1 65 5 255 0

26 64 8 1 70 6 300 0 

27 65 2 6 471 8 607 0

28 68 6 2 110 3 150 0 

29 70 3 3 222 5 305 0

30 70 6 2 120 4 230 0 

31 70 5 3 205 8 455 1

32 72 7 4 445 6 400 0 

33 75 6 1 77 2 168 0

34 75 4 2 166 5 404 0 

35 75 4 3 210 4 270 0 

36 78 8 2 180 7 555 1 

37 78 5 3 245 9 602 1

38 79 4 3 225 5 350 0 

39 80 3 4 300 6 499 0

40 90 73 5 400 9 723 0 

41 95 1 6 650 9 1006 1

42 98 6 2 215 3 333 0 
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table 29.6 Data from clothing retailer 

(Continued) 
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ID Amount Recency Freq12 Dollar12 Freq24 Dollar24 Card 

43 100 12 1 100 2 200 0
 

44 100 2 1 110 4 400 1 

45 100 3 3 217 6 605 0
 

46 100 3 4 330 8 660 1 

47 105 2 4 400 7 560 0
 

48 110 3 4 420 6 570 0 

49 125 3 2 270 5 590 1
 

50 140 6 3 405 6 775 0 

51 160 2 2 411 8 706 0
 

52 180 1 5 744 10 945 1 

53 200 1 3 558 4 755 1
 

54 240 4 4 815 10 1150 1 

55 250 3 3 782 10 1500 1
 

56 300 12 1 250 4 401 0 

57 340 1 5 1084 7 1162 1
 

58 500 4 2 777 3 905 1 

59 650  1 4 1493 7 2050 1
 

60  1,506,000 1 6 5000 11  8000 1 
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table 29.6 (Continued) 

The response variable y is the amount of  money spent by a customer. A 
careful examination of Table 29.6 reveals that the first three values for Amount 
are zero because some customers purchased items and then returned them. 
We are not interested in modeling returns, so these observations will be removed 
before proceeding. The last row of  Table 29.6 indicates that one customer 
spent $1,506,000 in the store. A quick consultation with the manager reveals 
that this observation is a data entry error, so this customer will also be 
removed from our analysis. We can now proceed with the cleaned data on 56 
customers. 

EXAMPLE 29.19 

We won’t go through all of  the expected relationships among the variables, but  
we would certainly expect the amount of  a purchase to be positively associated  
with the amount of  money spent over the last 12 and the last 24 months.  
Speculating about how the frequency of  purchases over the last 12 and 24  
months is related to the purchase amount is not as easy. Some customers may  
buy small amounts of  clothing on a regular basis, whereas others may purchase  
large amounts at less frequent intervals. Yet other people may purchase large  
amounts on a regular basis. 

DA
TA

 

CLOTHE 

Descriptive statistics and a matrix of correlation coefficients for the six quan­
titative variables are shown in Figure 29.14. As expected, Amount is strongly 
correlated with past spending: r 5 0.80368 with Dollar12 and r 5 0.67732 
with Dollar24. However, the matrix also reveals that these explanatory variables 
are correlated with one another. Because the variables are dollar amounts in 
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SAS 

The CORR Procedure 
6 Variables: Amount Recency Freq12 Dollar12 Freq24 Dollar24 

Simple Statistics 

Variable N Mean Std Dev Sum Minimum Maximum Label 

Amount 56 108.28571 112.18843 6064 30.00000 650.00000 Amount 
Recency 56 6.35714 7.29739 356.00000 1.00000 48.00000 Recency 
Freq12 56 2.98214 1.86344 167.00000 0 10.00000 Freq12 
Dollar12 56 309.26786 283.92915 17319 0 1493 Dollar12
Freq24 56 5.75000 2.74524 322.00000 0 13.00000 Freq24 
Dollar24 56 553.55357 379.07941 30999 0 2050 Dollar24

Pearson Correlation Coefficients, N = 56 
Prob > |r| under HO: Rho = 0 

Amount Recency Freq12 Dollar12 Freq24 Dollar24

Amount 1.00000 −0.22081 0.05160 0.80368 0.10172 0.67732
Amount 0.1020 0.7057 <.0001 0.4557 <.0001

Recency −0.22081 1.00000 −0.58382 −0.45387 −0.54909 −0.43238 

 

 

 

 

 

 

 
 

 

 

Recency 0.1020 <.0001 0.0004 <.0001 0.0009

Freq12 0.05160 -0.58382 1.00000 0.55586 0.70995 0.42147
Freq12 0.7057 <.0001 <.0001 <.0001 0.0012

Dollar12 0.80368 -0.45387 0.55586 1.00000 0.48495 0.82745
Dollar12 <.0001 0.0004 <.0001 0.0002 <.0001

Freq24 0.10172 -0.54909 0.70995 0.48495 1.00000 0.59622
Freq24 0.4557 <.0001 <.0001 0.0002 <.0001

Dollar24 0.67732 −0.43238 0.42147 0.82745 0.59622 1.00000
Dollar24 <.0001 0.0009 0.0012 <.0001 <.0001 

 

 

 

figure 29.14 
Descriptive statistics and correlation coefficients, for Example 29.19. 
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overlapping time periods, there is a strong positive association, r 5 0.82745, 
between Dollar12 and Dollar24. 

Recency (the number of  months since the last purchase) is negatively asso­
ciated with the purchase amount and with the four explanatory variables that 
indicate the number of  purchases or the amount of  those purchases. Perhaps 
recent customers (low Recency) tend to be regular customers and those who 
have not visited in some time (high Recency) include customers who often shop 
elsewhere. Customers with low Recency would then visit more frequently and 
spend more. 

One common mistake in modeling is to include too many variables in the mul-
tiple regression model, especially variables that are related to one another. A hasty 
user of statistical software will include all explanatory variables along with some 
possible interaction terms and quadratic terms. Here’s an example to show you what 
can happen. 



 

CrunchIt! 

Results - Multiple Linear Regression 

Export 

Amount = −0.105244 + 0.913276 * Recency − 19.8662 * 

Freq12 + 0.456385 * Dollar12 + 15.0452 * Freq24 + 
Fitted 

0.0785828 * Dollar24 − 23.0993 * Card − 0.0270543 * Int12 − 
Equation: 

0.0305059 * Int24 + 0.139565 * intCard12 − 0.0000486003 * 

Dollar12sq + 0.0000700631 * Dollar24sq 

Estimate Std. Error t value Pr(>Itl) 

(Intercept) −0.105244 33.4874 −0.00314281 0.997507 

Recency 0.913276 1.09630 0.833056 0.409313 

Freq12 −19.8662 10.5040 −1.89131 0.0651779 

Dollar12 0.456385 0.105805 4.31345 <0.0001 

Freq24 15.0452 7.14569 2.10550 0.0409903 

Dollar24 0.0785828 0.0759970 1.03402 0.306775 

Card −23.0993 28.5611 −0.808770 0.422999 

Int12 −0.0270543 0.0208868 −1.29529 0.201977 

Int24 −0.0305059 0.0106181 −2.87300 0.00623660 

IntCard12 0.139565 0.0822976 1.69585 0.0969796 

Dollar12sq −0.0000486003 0.000139699 −0.347893 0.729579 

Dollar24sq 0.0000700631 0.0000743761 0.942012 0.351330 

r-Squared: 0.916558 

Adjusted r-Squared: 0.895697 

sigma: 36.2324 
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EXAMPLE 29.20 

Create the following interaction terms and quadratic terms from the potential explana­
tory variables: 

lnt12 5 Freq12 3 Dollar12 

lnt24 5 Freq24 3 Dollar24 

lntCard12 5 Card 3 Dollar12 

Dollar12sq 5 Dollar12 3 Dollar12 

Dollar24sq 5 Dollar24 3 Dollar24 

Figure 29.15 shows the multiple regression output using all six explanatory vari­
ables provided by the manager and the five new variables. Most of the individual t 
statistics have P-values greater than 0.2, and only three have P-values less than 0.05. 

figure 29.15 
CrunchIt! output for the multiple   
regression model, Example 29.20. 
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The model is successful at explaining 91.66% of the variation in the purchase 
amounts, but it is large and unwieldy. Management will have to measure all these vari­
ables to use the model in the future for prediction. This model does set a standard: 
removing explanatory variables can only reduce R2, so no smaller model that uses 
some of these variables and no new variables can do better than R2  5 91.66%. But 
can a simpler model do almost as well? 

Some statistical software provides automated algorithms to choose regression 
models. All possible regression algorithms are very useful. On the other hand, algo-

rithms that add or remove variables one at a time often miss good models. We 
will not illustrate automated algorithms, but will build models by consider-
ing and evaluating various possible subsets of models. 

EXAMPLE 29.21 

To start, let’s look at a simple linear regression model with the single explanatory vari­
able most highly correlated with Amount. The correlations in Figure 29.14 show that 
this explanatory variable is Dollar12. The least-squares regression line for predicting 
the purchase amount y is 

y⁄ 5 10.0756 1 0.31756Dollar12 

Figure 29.16 shows the regression output for this simple linear regression model. 
This simple model has a low R2 of 64.59%, so we need more explanatory variables. 

CrunchIt! 

figure 29.16 
CrunchIt! output for the simple linear regression model in Example 29.21 using the 
dollar amount of purchases in the last 12 months (Dollar12) as the explanatory 
variable. 
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CrunchIt! 

Results - Multiple Linear Regression 

Export 

Estimate Std. Error t value Pr(>Itl) 

(Intercept) 7.62619 16.2885 0.468194 0.641566 

Dollar12 0.304786 0.0574760 5.30285 <0.0001 

Dollar24 0.0115597 0.0430493 0.268523 0.789339 

Estimate Std. Error t value Pr(>Itl) 

(Intercept) −17.6985 18.7574 −0.943545 0.349684 

Recency 2.78722 1.35728 2.05354 0.0449686 

Dollar12 0.350070 0.0348840 10.0353 <0.0001 

Estimate Std. Error t value Pr(>Itl) 

(Intercept) 88.7539 16.4472 5.39630 <0.0001 

Recency −1.10472 0.945486 −1.16841 0.247969 

Freq12 −36.5015 3.96893 −9.19681 <0.0001 

Dollar12 0.437832 0.0237334 18.4479 <0.0001 

Estimate Std. Error t value Pr(>Itl) 

(Intercept) 73.8976 10.4686 7.05898 <0.0001 

Freq12 −34.4259 3.56139 −9.66641 <0.0001 

Dollar12 0.443146 0.0233735 18.9593 <0.0001 
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EXAMPLE 29.22 

Of the remaining explanatory variables, Dollar24 and Recency have the stron­
gest associations with the purchase amounts. We will add these variables to 
try to improve our model. Rather than providing the complete computer output 
for each model, we will concentrate on the parameter estimates and individual 
t statistics provided in Figure 29.17. The fitted model using both Dollar12 and 
Dollar24 is 

⁄y 5 7.63 1 0.30Dollar12 1 0.01Dollar24 

The t statistic for Dollar12 has dropped from 9.92 to 5.30, but it is still signifi­
cant. However, if the amount of the purchases over the last 12 months (Dollar12) is 
already in the model, then adding the amount of purchases over the last 24 months 
(Dollar24) does not improve the model. 

figure 29.17 
CrunchIt! parameter estimates and individual t statistics for the models in 

Example 29.22. 
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Using Recency and Dollar12, we find the fitted model 

y⁄ 5 217.7 1 0.35Dollar12 1 2.79Recency 

Even though the t statistics associated with both explanatory variables are significant, 
the percent of variation in the purchase amounts explained by this model increases 
only to 67.2%. 

The frequency of visits over the last 12 months (Freq12) was not strongly associ­
ated with the purchase amount, but may be helpful because dollar amount and 
frequency provide different information. The fitted model using all three explanatory 
variables is 

y⁄ 5 88.75 1 0.44Dollar12 2 1.1Recency 2 36.5Freq12 

The t statistic for Dollar12 jumps to 18.45, and the t statistic for Recency drops 
to 21.17, which is not significant. Eliminating Recency from the model, we obtain 
the fitted model 

y⁄ 5 73.90 1 0.44Dollar12 2 34.43Freq12 

This model explains 87.18% of the variation in the purchase amounts. That 
is almost as good as the big clumsy model in Example 29.20, but with only two 
explanatory variables. We might stop here, but we will take one more approach to 
the problem. 

We have used the explanatory variables that were given to us by the manager 
to fit many different models. However, we have not thought carefully about 
the data and our objective. Thinking about the setting of the data leads to a 
new idea. 

EXAMPLE 29.23 

To predict the purchase amount for a customer, the average purchase over a recent 
time period might be helpful. We have the total amount and frequency of purchases 
over 12 months, so we can create a new variable 

Dollar12 
Purchase12 5 

Freq12 

If no purchases were made in the last 12 months, then Purchase12 is set to 0. 
Fitting a simple linear regression model with this new explanatory variable explains 
87.64% of the variation in the purchase amounts. This is better than almost all of 
our previous models. Figure 29.18 shows the fitted model 

y⁄ 5 222.99 1 1.34Purchase12 

on a scatterplot of Amount versus Purchase12 and the corresponding residual 
plot. 



  

 29.9 A Case Study for Multiple Regression 

R
es

id
ua

l 
A

m
ou

n
t 

600 

500 

400 

300 

200 

100 

0 

150 

100 

50 

0 

−50 

−100 

0 100 200 300 400 

Purchase12 

0 100 200 300 400 500 

Positive residuals 
for small fitted values 

Negative residuals for 
moderate fitted values 

Least-squares 
regression line 

Fitted value 

 
 
 

 

 
 
 
 

 

 
 

29-43 

This new linear model provides a good fit. The residual plot in Figure 29.18 
shows that low purchase amounts tend to be above the regression line, and moder-
ate purchase amounts tend to be below the line. This suggests that a model with 
some curvature might improve the fit. 

EXAMPLE 29.24 

Create the variable Purchase12sq, the square of Purchase12, to allow some cur­
vature in the model. Previous explorations also revealed that the dollar amount 
spent depends on how recently the customer visited the store, so an interaction 
term 

IntRecency12 5 Recency 3 Dollar12 

was created to incorporate this relationship into the model. The output for the 
multiple regression model using the three explanatory variables Purchase12, 
Purchase12sq, and IntRecency12 is shown in Figure 29.19. This model does a 
great job for the manager by explaining almost 94% of the variation in the purchase 
amounts. 

figure 29.18 
A scatterplot, including the simple linear 
regression line, and a residual plot, for 
Example 29.23. 
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Minitab

Regression Analysis: Amount versus purchase12,purchase12sq,...

SE CoefCoefPredictor T P

Constant 9.851 3.28 0.00232.302

Purchase12 0.1698 3.32 0.0020.5633

SSDFSource MS F P

Regression 650510 216837 270.18 0.0003

Residual Error 41734 80352

Purchase12sq 0.0004205 6.01 0.0000.0025257

IntRecency12 0.006603 −2.75 0.008−0.018137

S = 28.3296 R-Sq = 94.0% R−Sq(adj) = 93.6%

Analysis of Variance

The regression equation is

Amount = 32.3 + 0.563 Purchase12 + 0.00253 Purchase12sq − 0.0181
IntRecency12

CrunchIt!

Results - Multiple Linear Regression

Export

Fitted

Equation:

Estimate

(Intercept)

IntRecency12

Purchase12

Purchase12sq

r-Squared:

Adjusted r-Squared:

sigma:

32.3019

–0.0181371

0.563290

0.00252572

0.00660321

0.169800

0.000420486

–2.74672

3.31738

6.00667

0.939713

0.936235

28.3296

0.00825047

0.00166316

<0.0001

9.85095 3.27906 0.00186143

Std. Error t value Pr(>ItI)

Amount = 32.3019 – 0.0181371 * IntRecency12 +

0.563290 * Purchase12 + 0.00252572 *

Purchase12sq

  

 
  

 

 

 

 
  

 

 

 

Minitab 

Regression Analysis: Amount versus purchase12,purchase12sq,... 

SE CoefCoefPredictor T P 

Constant 9.851 3.28 0.00232.302 

Purchase12 0.1698 3.32 0.0020.5633 

SSDFSource MS F P 

Regression 650510 216837 270.18 0.0003 

Residual Error 41734 80352 

Purchase12sq 0.0004205 6.01 0.0000.0025257 

IntRecency12 0.006603 −2.75 0.008−0.018137 

S = 28.3296 R-Sq = 94.0% R−Sq(adj) = 93.6% 

Analysis of Variance 

The regression equation is 

Amount = 32.3 + 0.563 Purchase12 + 0.00253 Purchase12sq − 0.0181 
IntRecency12 
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CrunchIt! 

Results - Multiple Linear Regression 

Export 

Fitted 

Equation: 

Estimate 

(Intercept) 

IntRecency12 

Purchase12 

Purchase12sq 

r-Squared: 

Adjusted r-Squared: 

sigma: 

32.3019 

–0.0181371 

0.563290 

0.00252572 

0.00660321 

0.169800 

0.000420486 

–2.74672 

3.31738 

6.00667 

0.939713 

0.936235 

28.3296 

0.00825047 

0.00166316 

<0.0001 

9.85095 3.27906 0.00186143 

Std. Error t value Pr(>ItI) 

Amount = 32.3019 – 0.0181371 * IntRecency12 + 

0.563290 * Purchase12 + 0.00252572 * 

Purchase12sq 

figure 29.19 
Minitab and CrunchIt! output for the multiple regression model in Example 29.24. 
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APPLY YOUR KNOWLEDGE 

29.24 Diamonds. Suppose that the couple shopping for a diamond in Example 
29.15 (page 29-29) had used a quadratic regression model for the other quan-
titative variable, Depth. Use the data in Table 29.4 to answer the following 
questions. DA

TA DIAMND 

(a) What is the estimated quadratic regression model for mean total price 
based on the explanatory variable Depth? 

(b) As you discovered in part (a), it is always possible to fit quadratic models, but 
we must decide if they are helpful. Is this model as informative to the couple 
as the model in Example 29.15? What percent of variation in the total price 
is explained by using the quadratic regression model with Depth? 

29.25  tuition and Fees.	 	 Information regarding tuition and fees at the University of 
Virginia from 1970 to 2014 is provided in Table 29.7. 9 

DA
TA

 

TUITN 

Use statistical software 
to answer the following questions. 

(a) Find the simple linear regression equation for predicting tuition and fees 
from year, and save the residuals and fitted values. 

(b) The value of tuition and fees in 1971 is missing from the data set. Use the 
least-squares line to estimate this value. 

(c) Does the estimate obtained in part (b) intuitively make sense to you? That 
is, are you happy with this estimate? Explain. 

(d) Plot the residuals against year. What does the plot tell you about the 
adequacy of the linear fit? 

(e) Will this linear model overestimate or underestimate the tuition and fees 
at this college in the 1990s? 

(f)	 Because the residual plot shows a quadratic trend, it might be helpful to 
add a quadratic term to this model. Fit the quadratic regression model 
and provide the estimated model. 

table 29.7 out-of-state tuition and fees (in dollars) at the university of Virginia 

Year Tuition and Fees Year Tuition and Fees Year Tuition and Fees 

1970 1,069 1985 4,886 2000 17,409 

1971 missing 1986 5,468 2001 18,268 

1972 1,372 1987 5,796 2002 19,805 

1973 1,447 1988 6,336 2003 21,984 

1974 1,569 1989 7,088 2004 22,700 

1975 1,619 1990 8,136 2005 24,100 

1976 1,819 1991 9,564 2006 25,945 

1977 1,939 1992 10,826 2007 27,750 

1978 2,024 1993 12,254 2008 29,600 

1979 2,159 1994 13,052 2009 31,672 

1980 2,402 1995 14,006 2010 33,574 

1981 2,646 1996 14,434 2011 36,570 

1982 3,276 1997 15,030 2012 38,018 

1983 3,766 1998 15,814 2013 39,844 

1984 4,336 1999 16,603 2014 42,184 
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(g) Does the quadratic model provide a better fit than the linear model? 

(h) Would you be willing to make inferences based on the quadratic model? 
Explain. 

29.26 Fish Sizes. Table 29.8 contains data on the size of perch caught in a lake in 
Finland. Use statistical software to help you analyze these data. 10 DA

TA PERCH 

(a) Use the multiple regression model with two explanatory variables, length 
and width, to predict the weight of a perch. Provide the estimated mul-
tiple regression equation. 

(b) How much of the variation in the weight of perch is explained by the 
model in part (a)? 

(c) Does the ANOVA table indicate that at least one of the explanatory vari-
ables is helpful in predicting the weight of perch? Explain. 

table 29.8 Measurements on 56 perch 
Observation Weight Length Width Observation Weight Length Width 

Number (grams) (cm) (cm) Number (grams) (cm) (cm) 

104 5.9 8.8 1.4 132 197.0 27.0 4.2 

105 32.0 14.7 2.0 133 218.0 28.0 4.1 

106 40.0 16.0 2.4 134 300.0 28.7 5.1 

107 51.5 17.2 2.6 135 260.0 28.9 4.3 

108 70.0 18.5 2.9 136 265.0 28.9 4.3 

109 100.0 19.2 3.3 137 250.0 28.9 4.6 

110 78.0 19.4 3.1 138 250.0 29.4 4.2 

111 80.0 20.2 3.1 139 300.0 30.1 4.6 

112 85.0 20.8 3.0 140 320.0 31.6 4.8 

113 85.0 21.0 2.8 141 514.0 34.0 6.0 

114 110.0 22.5 3.6 142 556.0 36.5 6.4 

115 115.0 22.5 3.3 143 840.0 37.3 7.8 

116 125.0 22.5 3.7 144 685.0 39.0 6.9 

117 130.0 22.8 3.5 145 700.0 38.3 6.7 

118 120.0 23.5 3.4 146 700.0 39.4 6.3 

119 120.0 23.5 3.5 147 690.0 39.3 6.4 

120 130.0 23.5 3.5 148 900.0 41.4 7.5 

121 135.0 23.5 3.5 149 650.0 41.4 6.0 

122 110.0 23.5 4.0 150 820.0 41.3 7.4 

123 130.0 24.0 3.6 151 850.0 42.3 7.1 

124 150.0 24.0 3.6 152 900.0 42.5 7.2 

125 145.0 24.2 3.6 153 1015.0 42.4 7.5 

126 150.0 24.5 3.6 154 820.0 42.5 6.6 

127 170.0 25.0 3.7 155 1100.0 44.6 6.9 

128 225.0 25.5 3.7 156 1000.0 45.2 7.3 

129 145.0 25.5 3.8 157 1100.0 45.5 7.4 

130 88.0 26.2 4.2 158 1000.0 46.0 8.1 

131 180.0 26.5 3.7 159 1000.0 46.6 7.6 
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(d) Do the individual t tests indicate that both �1 and �2 are significantly dif-
ferent from zero? Explain. 

(e) Create a new variable, called interaction, that is the product of length 
and width. Use the multiple regression model with three explanatory 
variables, length, width, and interaction, to predict the weight of a 
perch. Provide the estimated multiple regression equation. 

(f) 	 How much of the variation in the weight of perch is explained by the 
model in part (e)? 

(g) Does the ANOVA table indicate that at least one of the explanatory vari-
ables is helpful in predicting the weight of perch? Explain. 

(h) Describe how the individual t statistics changed when the interaction 
term was added. 

We discussed the general form of inference procedures for regression parameters 
earlier in the chapter, using software output. This section provides more details for 
the analysis of variance (ANOVA) table, the F test, and the individual t statistics for 
the multiple regression model with p explanatory variables,  �y  5  �0  1  �1x1  1  �2x2  
1 . . .  1  �pxp. 

Software always provides the ANOVA table. The general form of the ANOVA 
table is shown below. 

Degrees of 
Freedom Source Sum of Squares Mean Square F Statistic 

SSM 
MSM 5   

p 	
MSM 

F  5    
MSE 

Model p  SSM 5  S(⁄y 2  y  )2  

SSE 
MSE 5  

n 2 p 2 1 
Error n 2 p 2 1  SSE 5  S(   ⁄  )2y 2 y  

Total n 2 1  S(y  2  y  )2  

EXAMPLE 29.25 

The final multiple regression model for the clothing retailer data in Example 29.24 is 

�y 5 �0 1 �1x1 1 �2x2 1 �3x3 

where x1  5  Purchase12, x2  5  Purchase12sq, and x3  5  IntRecency. It is a good idea 
to check that the degrees of freedom from the ANOVA table on the output match 
the form above. This verifies that the software is using the number of observations 
and the number of explanatory variables that you intended. The model degrees 
of freedom is the number of explanatory variables, 3, and the total degrees of 
freedom (degrees of freedom for the model plus degrees of freedom for error) is 
the number of observations minus 1, 56 2 1 5 55. We usually do not check the 
other calculations by hand, but knowing that the mean sum of squares is the sum 
of squares divided by the degrees of freedom and that the F statistic is the ratio of 
the mean sum of squares for each source helps us understand how the F statistic 
is formed. 
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Do Good Looks Mean
Good Money? 

Statistics 
In Your 
World Experienced researchers  

who have spent decades studying  
physical attractiveness suggest that  
good looks translate into good money.  
In particular, studies suggest that  
“plain people earn 5% to 10% less  
than people of average looks, who in  
turn earn 3% to 8% less than those  
deemed good-looking.” Other studies  
suggest that size is important also, with  
tall people earning considerably more  
over their careers than short people.  
Before you take a look in the mirror, it  
is important to understand that hiring  
managers say that the appearance of  
confidence is more attractive to them  
than physical beauty. 

The first formal test in most multiple regression studies is the ANOVA F  test.  
This test is used to check if the complete set of explanatory variables is helpful in 
predicting the response variable. 

Analysis of Variance F  test  
The analysis of variance F statistic tests the null hypothesis that all the regression coefficients  
(�s) except �0 are equal to zero. The test statistic is  

F

P-values come from the F distribution with p and n 2 p 2 1 degrees of freedom. 

To give formulas for the numerator and denominator of the F statistic, let  ⁄y  
stand for predicted values and let y be the average of the response observations. The  
numerator of  F is the mean square for the model:  

⁄S(y 2 y )2 

 
  

 5 
p
 
 

 Variation  due  to  model

The denominator of F is the mean square for error: 


⁄S(y 2 y)2



5 
n 2 p 2 1 

 Variation  due  to  error  

The  P value for a test of H0 against the alternative that at least one � parameter  
is not zero is the area to the right of F under an F(p,  n 2 p 2 1) distribution. 

EXAMPLE 29.26 

The ANOVA table in Figure 29.19 (page 29-44) shows an F  statistic of  270.18. The 
P-value provided on the output is the area to the right of 270.18 under an F distribu­
tion with 3 numerator and 52 denominator degrees of freedom. Because this area is 
so small (,0.001), we reject the hypothesis that the � coefficients associated with 
the three explanatory variables are all equal to zero. The three explanatory variables 
together do help predict the response. 

As we have seen, individual t  tests are helpful in identifying the explana-
tory variables that are useful predictors, but extreme caution is necessary when  

interpreting the results of these tests. Remember that an individual t  
assesses the contribution of its variable after controlling for the effects of  
the other variables in this specific model. That is, individual t’s depend on  

the model in use, not just on the direct association between an explanatory  
variable and the response. 

Confidence Intervals and Individual t  tests   
for Coefficients  

A level C confidence interval for a regression coefficient � is b  6  t*SEb. 

The critical value t* is obtained from the tn 2 p21 distribution. 
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EXAMPLE 29.27 

The t statistic for testing the null hypothesis that a regression coefficient is equal to zero 
has the form 

P
t 

 arameter  estimate  b 
5 5 

 Standard  error  of  estimate  SEb 

In terms of a random variable T having the tn 2p 2 1 distribution, the P-value for a test of 
H0 against 

Ha:  �  .  0 is P(T  $  t) 

 

 

Ha:  �  ,  0 is P(T  #  t)

Ha:  �  ≠   0 is 2P(T  $ utu )

t

|t| 

t

The individual t statistics and corresponding P-values in Figure 29.19 (page 29-44) 
indicate that all three of the explanatory variables are useful predictors. All the 
P-values are below 0.01, which indicates very convincing evidence of statistical 
significance. The P-values are computed using a t distribution with 52 degrees of 
freedom. The degrees of freedom for error in the ANOVA table will always tell you 
which t distribution to use for the individual � coefficients. 

The main purpose of most regression models is prediction. Construction of 
confidence intervals for a mean response and prediction intervals for a future observation 
with multiple regression models is similar to the methods we used for simple 
linear regression. The main difference is that we must now specify a list of values 
for all of the explanatory variables in the model. As we learned in Chapter 25, 
the additional uncertainty in predicting future observations will result in prediction 
intervals that are wider than confidence intervals. 

Confidence and Prediction Intervals for Multiple
 

Regression Response
 


A level C confidence interval for the mean response �y is 
⁄ y 6  t*SE ⁄ �. 

⁄A level C prediction interval for a single response �y is y 6 t*SE ⁄y. 

In both intervals, t* is the critical value for the tn2p21 density curve with area C between 
2t and t. 
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EXAMPLE 29.28 

Figure 29.20 provides the predicted values, 95% confidence limits for the mean pur­
chase amount, and 95% prediction limits for a future purchase amount for each of the 
56 observations in Table 29.6. The values of the explanatory variables don’t appear, but 
they are needed to obtain the predicted values y⁄ and the endpoints of the intervals. As 
expected, the prediction intervals for future purchase amounts are always wider than the 
confidence intervals for the mean purchase amounts. You can also see that predicting 
future purchase amounts, even with a good model, is not an easy task. Several of the 
prediction intervals (for Observations 1 to 3, for example) include purchase amounts 
below zero. The manager will not give customers money for coming to the store, so the 
lower endpoint of the prediction intervals should be zero for practical purposes. 

APPLY YOUR KNOWLEDGE 

29.27  World Record Running times. 	 Exercise 29.15 (page 29-26) shows the pro-
gress of world record times (in seconds) for the 10,000-meter run for both men 

DA
TA RECORD and women.

(a) Provide the ANOVA table for the regression model with two regression 
lines, one for men and one for women. 

(b) Are all the individual coefficients significantly different from zero? Set up 
the appropriate hypotheses, identify the test statistics and P-values, and 
make conclusions in the context of the problem. 

29.28  Fish Sizes. 	 Use explanatory variables length, width, and interaction from 
Exercise 29.26 (page 29-48) on the 56 perch to provide 95% confidence inter-
vals for the mean and prediction intervals for future observations. Interpret
both intervals for the 10th perch in the data set. What t distribution is used to 
provide both intervals? DA

TA PERCH 

 

29.29 Clothing Retailer. 	Because the average purchase amount Purchase12 was such 
a good predictor, the manager would like you to consider another explanatory 
variable: the average purchase amount from the previous 12 months. Create 

DA
TAthe new variable CLOTHE2 

Dollar24 2 Dollar12 
Purchase12b 5 

Freq24 2 Freq12 

and add it to the final model obtained in Example 29.24 (page 29-43). 

(a) What is R2 for this model? How does this value compare with R2 in 
Example 29.24? 

(b) What is the value of the individual t statistic for this new explanatory variable? 
How much did the individual t statistics change from their previous values? 

(c) Would you recommend this model over the model in Example 29.24? Explain. 

29.11 Checking the Conditions for Inference 
A full picture of the conditions for multiple regression requires much more than a 
few plots of the residuals. We will present only a few methods here because regres-
sion diagnostics is a subject that could fill an entire book. 

Plot the response variable against each of the explanatory variables. These plots help 
you explore and understand potential relationships. Multiple regression models 
allow curvature and other interesting features that are not simple to check visually, 
especially when we get beyond two explanatory variables. 



 
  

Observation Predicted Lower Upper Lower Upper 
value confidence confidence prediction prediction 

limit limit limit limit

 1 48.854 38.688 59.020 -8.895 106.603
 2 55.898 46.389 65.408 -1.739 113.536
 3 32.302 12.535 52.069 -27.884 92.488
 4 62.648 44.743 80.552 3.047 122.248
 5 57.080 47.212 66.949 -0.618 114.778
 6 32.302 12.535 52.069 -27.884 92.488
 7 59.603 50.162 69.044 1.977 117.229
 8 51.280 41.540 61.019 -6.396 108.956
 9 51.274 40.684 61.865 -6.551 109.100 
10 57.712 47.957 67.467 0.034 115.391 
11 44.265 32.626 55.905 -13.762 102.292 
12 61.743 52.592 70.894 4.164 119.323 
13 65.182 54.487 75.577 7.392 122.972 
14 56.074 47.078 65.071 -1.481 113.630 
15 49.852 36.572 63.132 -8.526 108.230 
16 32.302 12.535 52.069 -27.884 92.488 
17 68.271 57.911 78.631 10.487 126.055 
18 32.302 12.535 52.069 -27.884 92.488 
19 55.898 46.389 65.408 -1.739 113.536 
20 68.873 60.745 77.002 11.447 126.299 
21 64.769 56.435 73.102 7.313 122.224 
22 65.440 57.153 73.727 7.992 122.888 
23 73.951 64.798 83.105 16.372 131.531 
24 74.999 66.872 83.126 17.574 132.425 
25 58.953 49.973 67.932 1.400 116.505 
26 75.737 66.997 84.477 18.221 133.252 
27 62.133 53.562 70.704 4.643 119.623 
28 63.997 55.576 72.417 6.529 121.464 
29 69.730 42.980 96.481 6.903 132.558 
30 82.271 71.943 92.599 24.493 140.049 
31 84.412 75.037 93.787 26.796 142.027 
32 68.873 60.745 77.002 11.447 126.299 
33 77.339 67.427 87.251 19.634 135.044 
34 72.931 64.150 81.712 15.409 130.453 
35 72.432 64.343 80.521 15.012 129.853 
36 72.432 64.343 80.521 15.012 129.853 
37 71.765 63.073 80.457 14.257 129.273 
38 111.178 98.769 123.587 52.992 169.364 
39 98.647 88.821 108.472 40.956 156.337 
40 92.124 82.895 101.352 34.532 149.715 
41 120.835 104.098 137.571 61.575 180.095 
42 74.454 65.713 83.195 16.938 131.970 
43 78.008 69.779 86.238 20.568 135.448 
44 99.378 89.069 109.688 41.604 157.153 
45 96.441 86.821 106.061 38.785 154.096 
46 139.686 125.150 154.223 81.010 198.363 
47 110.304 92.452 128.156 50.719 169.889 
48 239.811 218.604 261.019 179.137 300.486 
49 158.549 141.885 175.212 99.309 217.788 
50 214.333 192.262 236.404 153.351 275.315 
51 192.798 168.575 217.022 131.005 254.591 
52 308.199 289.938 326.459 248.490 367.907 
53 276.571 255.327 297.814 215.883 337.258 
54 253.477 233.630 273.324 193.265 313.690 
55 575.983 534.751 617.214 505.757 646.208 
56 567.343 529.980 604.707 499.316 635.371 
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SAS 


figure 29.20 
Predicted values, confidence limits for the mean purchase amount, and prediction limits for a future purchase
 

amount, for Example 29.28.
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Plot the residuals against the predicted values and against all of the explanatory variables 
in the model. These plots will allow you to check the condition that the standard 
deviation of the response about the multiple regression model is the same every-
where. They should show an unstructured horizontal band of points centered at 
0. The mean of the residuals is always 0, just as in simple linear regression, so we 
continue to add a line at 0 to orient ourselves. Funnel or cone shapes indicate that 
this condition is not met and that the standard deviation of the residuals must be 
stabilized before making inferences. Other patterns in residual plots can sometimes 
be fixed by changing the model. For example, if you see a quadratic pattern, then 
you should consider adding a quadratic term for that explanatory variable. 

Look for outliers and influential observations in all residual plots. To check the influ-
ence of a particular observation, you can fit your model with and without this 
observation. If the estimates and statistics do not change much, you can safely pro-
ceed. However, if there are substantial changes, you must begin a more careful inves-
tigation. Do not simply throw out observations to improve the fit and increase R2.  
Ideally, we would like all of the explanatory variables to be independent and the 
observations on the response variable to be independent. As you have seen in this 
chapter, practical problems include explanatory variables that are not indepen-
dent. Association between two or more explanatory variables can create serious 
problems in the model, so use correlations and scatterplots to check relationships. 

To check the condition that the response should vary Normally about the multiple 
regression model, make a histogram or stemplot of the residuals. We can rely on the robust-
ness of the regression methods when there is a slight departure from Normality, 
except for prediction intervals. As in the case of simple linear regression, we view 
prediction intervals from multiple regression models as rough approximations. 

EXAMPLE 29.29 

Figure 29.21 shows residual plots for the final model in Example 29.24 (page 
29-43). The scatterplot shows that the variability for the larger predicted values is 
greater than the variability for the predicted values below 200. The constant-variance 
condition is not satisfied. Because most of the predicted values are below 200 and 
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figure 29.21 
Residual plots for the multiple regression model in Example 29.24. (a) A scatterplot of the residuals against the predicted values. (b) A histogram of the residuals. 
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the variability is roughly constant in that range, we will not resort to more sophisti­
cated methods to stabilize the variance.

 The histogram shows approximate perfect symmetry in the residuals. The residu­
als above 75 and below 275  are apparent on the scatterplot and the histogram. 
This is a situation in which we need to rely on the robustness of regression inference 
when there are slight departures from Normality. 

APPLY YOUR KNOWLEDGE 

29.30 Final Model for the Clothing Retailer Problem.	 	The two residual plots 
below show the residuals for the final model in the clothing retailer problem 
plotted against Purchase12 and Recency. Do the plots suggest any potential prob-
lems with the conditions for inference? Comment. 

29.31 the Clothing Retailer Problem.	 	The accompanying scatterplot and histo-
gram show the residuals from the model in Example 29.20 with all explana-
tory variables, some interaction terms, and quadratic terms. Comment on both 
plots. Do you see any reason for concern in using this model for inference? 
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Chapter 29  SuMMarY 

Chapter Specifics 
•	 An indicator variable x2 can be used to fit a regression model with two parallel lines. The 

mean response is 

�y 5 �0 1 �1x1 1 �2x2 

where x1 is an explanatory variable. 
•	 A multiple regression model with two regression lines includes an explanatory variable x1, 

an indicator variable x2, and an interaction term x1x2. The mean response is 

�y 5 �0 1 �1x1 1 �2x2 1 �3x1x2 

•	 The mean response �y for a general multiple regression model based on p explanatory 
variables x1, x2, . . . , xp is 

�y 5 �0 1 �1x1 1 �2x2 1 Á 1 �pxp 

•	 The estimated regression model is 
⁄y 5 b0 1 b1x1 1 b2x2 1 Á 1 bp xp 

where the b’s are obtained by the method of least squares. 

•	 The regression standard error s has n 2 p 2 1 degrees of freedom and is used to estimate �. 

•	 The sum of squares row in the analysis of variance (ANOVA) table breaks the total vari-
ability in the responses into two pieces. One piece summarizes the variability due to the 
model, and the other piece summarizes the variability due to error: 

Total sum of squares 5 Model sum of squares 1 Error sum of squares 

•	 The squared multiple correlation coefficient R2 represents the proportion of variability 
in the response variable y that is explained by the explanatory variables x1, x2, . . . , xp in 
a multiple regression model. 

•	 To test the hypothesis that all the regression coefficients (�’s), except �0, are equal to zero, use 
the ANOVA F statistic. In other words, the null model says that the x’s do not help predict 
y. The alternative is that the explanatory variables as a group are helpful in predicting y. 

•	 Individual t procedures in regression inference have n  2  p  2 1 degrees of freedom. These 
individual t procedures depend on the other explanatory variables specified in a multiple 
regression model. Individual t tests assess the contribution of one explanatory variable 
after controlling for the effects of the other variables in a model. The null hypothesis is 
written as H0: �  5 0 but interpreted as “the coefficient of x is 0 in this model.” 

•	 Confidence intervals for the mean response �y have the form ⁄y  6  t*SE ⁄ 
�. Prediction 

intervals for individual future responses y have the form ⁄y  6  t*SEy⁄. 

Statistics in Summary 
Here are the most important skills you should have acquired from reading this chapter. 

A. Preliminaries 
1. Examine the data for outliers and other deviations that might influence your conclusions. 
2. Use descriptive statistics, especially correlations, to get an idea of which explanatory 

variables may be most helpful in explaining the response. 
3. Make scatterplots to examine the relationships between explanatory variables and a 

response variable. 
4. Use software to compute a correlation matrix to explore the relationships between 

pairs of variables. 

B. Recognition 
1.  Recognize when a multiple regression model with parallel regression lines is appropriate. 
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Check Your Skills 29-55 

2. Recognize when an interaction term needs to be added to fit a multiple regression 

model with two separate regression lines. 


3. Recognize when a multiple regression model with several explanatory variables is 

appropriate. 


4. Recognize the difference between the overall F test and the individual t tests. 
5. Recognize that the parameter estimates, t statistics, and P-values for each explanatory 


variable depend on the specific model. 

6. Inspect the data to recognize situations in which inference isn’t safe: influential 


observations, strongly skewed residuals in a small sample, or nonconstant variation 

of the data points about the regression model. 


C. Inference Using Software 
1. Use software to find the estimated multiple regression model. 
2. Explain the meaning of the regression parameters (�’s) in any specific multiple
 

regression model.
 
3. Understand the software output for regression. Find the regression standard error, 


the squared multiple correlation coefficient R2, and the overall F test and P-value. 

Identify the parameter estimates, standard errors, individual t tests, and P-values. 


4. Use that information to carry out tests and calculate confidence intervals for the �’s.  
5. Use R2 and residual plots to assess the fit of a model. 
6. Choose a model by comparing R2-values, regression standard errors, and individual 


t statistics. 

7. Explain the distinction between a confidence interval for the mean response and a 


prediction interval for an individual response. 


Link It 
Chapters 4, 5, and 25 discuss scatterplots, correlation, and regression. In these chapters, 
we studied how to use a single explanatory variable to predict a response, although in 
Chapter 4 we saw how to incorporate a categorical variable into a scatterplot. In this chap-
ter, we extend the ideas of Chapters 4, 5, and 25 and learn how to use several explanatory 
variables to predict a response. The multiple regression model is similar to the simple 
linear regression model but with more explanatory variables. The conditions for inference, 
the methods for estimating and testing hypotheses about regression coefficients, predic-
tion, and checking the conditions for inference are much like those discussed in Chapter 
25. New concepts include the notion of an interaction, deciding which of several candidate 
regression models is best, and interpreting parameter estimates when several explanatory 
variables are included. We will encounter some of these new concepts again in Chapter 30. 

Macmillan Learning online Resources 
If you are having difficulty with any of the sections of this chapter, this online 
resource should help prepare you to solve the exercises at the end of this chapter: 

•	 LearningCurve provides you with a series of questions about the chapter 
that adjust to your level of understanding. 

ChECK YOUR sKILLs 

Many exercise bikes, elliptical trainers, and treadmills display basic  
information like distance, speed, calories burned per hour (or total cal-
ories), and duration of the workout. The data in Table 29.9 show the  
treadmill display’s claimed calories  per hour by  speed for a 175-pound  
male using a Cybex treadmill at inclines of 0%, 2%, and 4%. 

Calories 5 calories burned per hour 

Mph 5 speed of the treadmill 

Incline 5 the incline percent 0, 2, or 4 

IndSlow 5 1 for Mph #  3 and IndSlow 5 0 for Mph .  3

The relationship between speed and calories is different for walking 
and running, so we need an indicator for slow/fast. The variables 
created from Table 29.9 are 

Here is part of the Minitab output from fitting a multiple regres-
sion model to predict Calories from Mph, IndSlow, and Incline for the  
Cybex treadmill. Exercises 29.32 to 29.41 are based on this output. 
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(b)

Mph 0% 2% 4% 


1.5 174 207 240 


2.0 205 249 294 


2.5 236 291 347 


3.0 267 333 400 


3.5 372 436 503 


4.0 482 542 607 


4.5 592 649 709 


5.0 701 756 812 


5.5 763 824 885 


6.0 825 892 959 


6.5 887 960 1032 


7.0 949 1027 1105 


7.5 1011 1094 
 1178
 

8.0 1073 1163 1252 


8.5 1135 1230 
 1325
 

9.0 1197 1298 1398 


9.5 1259 1365 
 1470
 

10.0 1321 1433 1544 


	 

	 

	 

 

Minitab 

Predictor Coef SE Coef T P 
Constant -80.41 18.99 -4.24 0.000 
Mph 145.841 2.570 56.74 0.000 
IndSlow -50.01 16.04 -3.12 0.003 
Incline 36.264 2.829 12.82 0.000 

S = 33.9422 R-Sq = 99.3% R-Sq(adj) = 99.3% 

Analysis of Variance 

Source Df SS MS F P 
Regression 3 8554241 2851414 2475.03 0.000 
Residual Error 50 57604 1152 
Total 53 8611845 

Predicted Values for New Observations 
New 
Obs Fit SE Fit 95% CI 95% PI
  1 940.09 5.28 (929.49, 950.69) (871.09, 1009.08) 

Values of Predictors for New Observations 
New 
Obs Mph IndSlow Incline
 1 6.50 0.000000 2.00 

29-56



table 29.9 Cybex tr eadmill 
display’s claimed 
calories per hour 
by speed and 
incline for  
a 175-pound man 

Incline 


29.32 The number of parameters in this multiple regression 
model is 

(a) 4. (b) 5. (c) 6. 

29.33 The equation for predicting calories from these explan-
atory variables is 

(a)	 Calories 5 280.41 1 145.84Mph 2 50.01IndSlow 

1 36.26Incline. 

(b) Calories 5 24.24 1 56.74Mph 2 3.12IndSlow 

1 12.82Incline. 

(c)	 Calories 5 18.99 1 2.57Mph 1 16.04IndSlow 

1 2.83Incline. 

29.34 The regression standard error for these data is 

(a) 0.993.	 (b) 33.94. (c) 1152. 

29.35 To predict calories when walking (Mph # 3) with no 
incline, use the line 

(a)  280.41 1 145.84Mph. 

(b)  (280.41 2 50.01) 1 145.84Mph. 

(c)  f280.41 1 (2 3 36.26)g 1 145.84Mph. 

29.36 To predict calories when running (Mph . 3) with no 
incline, use the line 

(a)  280.41 1 145.84Mph. 

(b) (280.41 1 36.26) 1 145.84Mph. 

(c)  f280.41 1 (2 3 36.26)g 1 145.84Mph. 

29.37 To predict calories when running on a 2% incline, use 
the line 

(a)  280.41 1 145.84Mph. 

(b) (280.41 2 50.01) 1 145.84Mph. 

(c)  f280.41 1 (2 3 36.26)g 1 145.84Mph. 

29.38 Is there significant evidence that more calories are 
burned for higher speeds? To answer this question, test 
the hypotheses 

(a)  H0: �0  5 0 versus Ha: �0  . 0. 

(b)  H0: �1  5 0 versus Ha: �1  . 0. 

(c)  H0: �1  5 0 versus Ha: �1  ≠ 0. 

29.39 Confidence intervals and tests for these data use the 
t distribution with degrees of freedom 

(a)  3.  50. (c) 53. 

29.40 Orlando, a 175-pound man, plans to run 6.5 miles per 
hour for one hour on a 2% incline. He can be 95% 
confident that he will burn between 

(a) 871 and 1009 calories. 

(b)  929 and 951 calories. 

(c)  906 and 974 calories. 
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29.41 Suppose that we also have data on a second treadmill, 
made by LifeFitness. An indicator variable for brand of 
treadmill, say Treadmill 5 1 for Cybex and Treadmill 5 
0 for LifeFitness, is created for a new model. If the three 
explanatory variables above and the new indicator vari-

ChAPtER 29 EXERCIsEs 
29.42 A computer game. A multimedia statistics learning sys-

tem includes a test of skill in using the computer’s 
mouse. The software displays a circle at a random loca-
tion on the computer screen. The subject clicks in the 
circle with the mouse as quickly as possible. A new circle 
appears as soon as the subject clicks the old one. Ta-
ble 5.3 (text page 161) gives data for one subject’s trials, 
20 with each hand. Distance is the distance from the 
cursor location to the center of the new circle, in units 
whose actual size depends on the size of the screen. 
Time is the time required to click in the new circle, in 
milliseconds.11 

(a) Specify the population multiple regression model 
for predicting time from distance separately for 
each hand. Make sure you include the interaction 
term that is necessary to allow for the possibility of 
having different slopes. Explain in words what each 
� in your model means. 

able Treadmill were used to predict Calories, how many 
� parameters would need to be estimated in the new 
multiple regression model? 

(a) 4  (b) (c)

(b) Use statistical software to find the estimated mul-
tiple regression equation for predicting time from 
distance separately for each hand. What percent of 
variation in the distances is explained by this mul-
tiple regression model? 

(c) Explain how to use the estimated multiple regres-
sion equation in part (b) to obtain the least-squares 
line for each hand. Draw these lines on a scatter-
plot of time versus distance. 

29.43 Bank wages and length of service. We assume that our 
wages will increase as we gain experience and become 
more valuable to our employers. Wages also increase 
because of inflation. By examining a sample of employ-
ees at a given point in time, we can look at part of the 
picture. How does length of service (LOS) relate to 
wages? Table 29.10 gives data on the LOS in months 
and wages for 60 women who work in Indiana banks. 

table 29.10 Bank wages, length of service, and bank size 

Wages Length of Service Size Wages Length of Service Size Wages Length of Service Size 

48.3355 94 Large 64.1026 24 Large 41.2088 97 Small 

49.0279 48 Small 54.9451 222 Small 67.9096 228 Small 

40.8817 102 Small 43.8095 58 Large 43.0942 27 Large 

36.5854 20 Small 43.3455 41 Small 40.7000 48 Small 

46.7596 60 Large 61.9893 153 Large 40.5748 7 Large 

59.5238 78 Small 40.0183 16 Small 39.6825 74 Small 

39.1304 45 Large 50.7143 43 Small 50.1742 204 Large 

39.2465 39 Large 48.8400 96 Large 54.9451 24 Large 

40.2037 20 Large 34.3407 98 Large 32.3822 13 Small 

38.1563 65 Small 80.5861 150 Large 51.7130 30 Large 

50.0905 76 Large 33.7163 124 Small 55.8379 95 Large 

46.9043 48 Small 60.3792 60 Large 54.9451 104 Large 

43.1894 61 Small 48.8400 7 Large 70.2786 34 Large 

60.5637 30 Large 38.5579 22 Small 57.2344 184 Small 

97.6801 70 Large 39.2760 57 Large 54.1126 156 Small 

48.5795 108 Large 47.6564 78 Large 39.8687 25 Large 

67.1551 61 Large 44.6864 36 Large 27.4725 43 Small 

38.7847 10 Small 45.7875 83 Small 67.9584 36 Large 

51.8926 68 Large 65.6288 66 Large 44.9317 60 Small 

51.8326 54 Large 33.5775 47 Small 51.5612 102 Large 
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Wages are yearly total income divided by the number of 
weeks worked. We have multiplied wages by a constant 
for reasons of confidentiality.12 

(a) Plot wages versus LOS using different symbols for 
size of the bank. There is one woman with relative-
ly high wages for her length of service. Circle this 
point and do not use it in the rest of this exercise. 

(b) Would you be willing to use a multiple regression 
model with parallel slopes to predict wages from 
LOS for the two different bank sizes? Explain. 

(c) Fit a model that will allow you to test the hypothesis 
that the slope of the regression line for small banks 
is equal to the slope of the regression line for large 
banks. Conduct the test for equal slopes. 

(d) Are the conditions for inference met for your model 
in part (c)? Construct appropriate residual plots and 
comment. 

29.44 Mean annual temperatures for two California cities. Ta-
ble 29.11 contains data on the mean annual temperatures 
(degrees Fahrenheit) for the years 1951–2014 at two loca-
tions in California: Pasadena and Redding.13 

(a) Plot the temperatures versus year using different 
symbols for the two cities. 

(b) Would you be willing to use a multiple regression 
model with parallel slopes to predict temperatures 
from year for the two different cities? Explain. 

(c) Fit a model that will allow you to test the hypothesis 
that the slope of the regression line for Pasadena is 

table 29.11 Mean annual temperatures (°F) in two California cities 

Mean Temperature Mean Temperature Mean Temperature 

Year  Pasadena Redding Year Pasadena Redding Year Pasadena 

1951 62.27 62.02 1977 64.47 63.89 2003 66.31 63.13 

1952 61.59 62.27 1978 64.21 64.05 2004 65.71 63.57 

1953 62.64 62.06 1979 63.76 60.38 2005 66.40 62.62 

1954 62.88 61.65 1980 65.02 60.04 2006 66.80 62.60 

1955 61.75 62.48 1981 65.80 61.95 2007 66.50 62.70 

1956 62.93 63.17 1982 63.50 59.14 2008 67.70 62.90 

1957 63.72 62.42 1983 64.19 60.66 2009 66.90 62.70 

1958 65.02 64.42 1984 66.06 61.72 2010 65.60 61.40 

1959 65.69 65.04 1985 64.44 60.50 2011 65.50 61.10 

1960 64.48 63.07 1986 65.31 61.76 2012 67.50 62.40 

1961 64.12 63.50 1987 64.58 62.94 2013 67.30 63.40 

1962 62.82 63.97 1988 65.22 63.70 2014 69.80 65.00 

1963 63.71 62.42 1989 64.53 61.50 

1964 62.76 63.29 1990 64.96 62.22 

1965 63.03 63.32 1991 65.60 62.73 

1966 64.25 64.51 1992 66.07 63.59 

1967 64.36 64.21 1993 65.16 61.55 

1968 64.15 63.40 1994 64.63 61.63 

1969 63.51 63.77 1995 65.43 62.62 

1970 64.08 64.30 1996 65.76 62.93 

1971 63.59 62.23 1997 66.72 62.48 

1972 64.53 63.06 1998 64.12 60.23 

1973 63.46 63.75 1999 64.85 61.88 

1974 63.93 63.80 2000 66.25 61.58 

1975 62.36 62.66 2001 64.96 63.03 

1976 64.23 63.51 2002 65.10 63.28 
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Variable Description 

Row  Row number in pine plantation 

Col  Column number in pine plantation 

Hgt90  Tree height at time of planting (cm) 

Hgt96  Tree height in September 1996 (cm) 

Diam96  Tree trunk diameter in September 1996 (cm) 

Hgt97  Tree height in September 1997 (cm) 

Diam97  Tree trunk diameter in September 1997 (cm) 

Spread97  Widest lateral spread in September 1997 (cm) 

Needles97  Needle length in September 1997 (mm) 

Deer95  Type of deer damage in September 1995: 
1 5 none, 2 5 browsed 

Deer97  Type of deer damage in September 1997:  
1 5 none, 2 5 browsed 

Cover95 	 	 Amount of thorny cover in September 1995: 
0 5 none, 1 5 ,  1/3, 2 5 between 1/3 and 
2/3, 3 5 .  2/3 

Fert  Indicator for fertilizer: 0 5 no, 1 5 yes 

Spacing  Distance (in feet) between trees (10 or 15) 

 

 

 

 

 

 

 

 
 
 

  

	equal to the slope of the regression line for Redding. 
Conduct the test for equal slopes. 

(d) Are the conditions for inference met for your model 
in part (c)? Construct appropriate residual plots and 
comment. 

29.45  Growth of pine trees. The Department of Biology at  
Kenyon College conducted an experiment to study the 
growth of pine trees. In April 1990, volunteers planted 
1000 white pine (Pinus strobus) seedlings at the Brown 
Family Environmental Center. The seedlings were plant-
ed in two grids, distinguished by 10- and 15-foot spacings 
between the seedlings. Table 29.12 (page 29-60) shows 
the first 10 rows of a subset of the data collected by stu-
dents at Kenyon College.14 

(a) Use tree height at the time of planting (Hgt90) and 
the indicator variable for fertilizer (Fert) to fit a mul-
tiple regression model for predicting Hgt97. Specify 
the estimated regression model and the regression 
standard error. Are you happy with the fit of this 
model? Comment on the value of R2 and the plot of 
the residuals against the predicted values. 

(b) Construct a correlation matrix with Hgt90, Hgt96, 
Diam96, Grow96, Hgt97, Diam97, Spread97, and 
Needles97. Which variable is most strongly correlated 
with the response variable of interest (Hgt97)? Does 
this make sense to you? 

(c) Add tree height in September 1996 (Hgt96) to the 
model in part (a). Does this model do a better job of 
predicting tree height in 1997? Explain. 

29-59 

(d) What happened to 	the individual t statistic for 
Hgt90 when Hgt96 was added to the model? Ex-
plain why this change occurred. 

(e) Fit a multiple regression model for predicting Hgt97 
based on the explanatory variables Diam97, Hgt96, 
and Fert. Summarize the results of the individual t 
tests. Does this model provide a better fit than the 
previous models? Explain by comparing the values 
of R2 and s for each model. 

(f) Does the parameter estimate for the variable indi-
cating whether a tree was fertilized or not have the 
sign you expected? Explain. (Experiments can pro-
duce surprising results!) 

(g) Do you think that the model in part (e) should be 
used for predicting growth in other pine seedlings? 
Think carefully about the conditions for inference. 

29.46 Heating a home. The Sanchez household is about to in-
stall solar panels to reduce the cost of heating their 
house. In order to know how much the solar panels help, 
they record their consumption of natural gas before the 
solar panels are installed. Gas consumption is higher in 
cold weather, so the relationship between outside tem-
perature and gas consumption is important. Here are 
the data for 16 consecutive months.15 

Month Nov. Dec. Jan. Feb. Mar. Apr. May June 

Degree-days 24 51 43 33 26 13 4 0 

Gas used 6.3 10.9 8.9 7.5 5.3 4.0 1.7 1.2 

Month July Aug. Sept. Oct. Nov. Dec. Jan. Feb. 

Degree-days 0 1 6 12 30 32 52 30 

Gas used 1.2 1.2 2.1 3.1 6.4 7.2 11.0 6.9 

Outside temperature is recorded in degree-days, a com-
mon measure of demand for heating. A day’s degree-days 
are the number of degrees its average temperature falls be-
low 65°F. Gas used is recorded in hundreds of cubic feet. 

(a) Create an indicator variable, say INDwinter, which is 
1 for the months of November, December, January, 
and February. Make a plot of all the data using a 
different symbol for winter months. 

(b) Fit the model with two regression lines, one for win-
ter months and one for other months, and identify 
the estimated regression lines. 

(c) Do you think that two regression lines were needed 
to explain the relationship between gas used and 
degree-days? Explain. 

29.47 Burning calories with exercise. Many exercise bikes, el-
liptical trainers, and treadmills display basic information 
like distance, speed, calories burned per hour (or total 
calories), and duration of the workout. Let’s take anoth-
er look at the data in Table 29.9 (page 29-56) that were 
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Minitab 

Regression Analysis: Calories versus Mph, IndSlow, NoIncline, 2%Incline 

Predictor 
Constant 
Mph 
IndSlow 
NoIncline 
2%Incline 

Coef 
64.75 

145.841 
−50.01 

−145.06 
−72.83 

SE Coef 
19.46 
2.596 
16.20 
11.43 
11.43 

T 
3.33 
56.17 
−3.09 

−12.69 
−6.37 

P 
0.002 
0.000 
0.003 
0.000 
0.000 

S = 34.2865 R-Sq = 99.3% R-Sq(adj) = 99.3% 

Analysis of Variance 

Source 
Regression 
Residual Error 
Total 

Df 
4 

49 
53 

SS 
8554242 

57603 
8611845 

MS 
2138561 

1176 

F 
1819.18 0

P 
.000 
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used for the Check Your Skills exercises. Scatterplots 
show different linear relationships for each incline, one 
for slow speeds and another for faster speeds, so the fol-
lowing indicator variables were created: DA

TA TRDMILL 

IndSlow 5 1 for Mph # 3 and IndSlow 5 0 for Mph . 3. 

NoIncline 5 1 for 0% incline and NoIncline 5 0 for 
other inclines 

2%Incline 5 1 for a 2% incline and 2%Incline 5 0 for 
other inclines 

Above is part of the Minitab output from fitting a 
multiple regression model to predict Calories from 
Mph, IndSlow, NoIncline, and 2%Incline for the Cybex. 

(a) Use the Minitab output to estimate each parameter 
in this multiple regression model for predicting cal-
ories burned with the Cybex machine. Don’t forget 
to estimate �. 

(b) How many separate lines are fitted with this model? 
Do the lines all have the same slope? Identify each 
fitted line. 

(c) Do you think that this model provides a good fit for 
these data? Explain. 

(d) Is there significant evidence that more calories are 
burned for higher speeds? State the hypotheses, 
identify the test statistic and P-value, and provide a 
conclusion in the context of this question. 

29.48 Burning calories with exercise. Table 29.13 provides 
data on speed and calories burned per hour for 
a 175-pound male using two different treadmills (a 
Cybex and a LifeFitness) at inclines of 0%, 2%, 
and 4%. DA

TA TRDMILL2 

(a) Create a scatterplot of calories against miles per 
hour using six different plotting symbols, one for 
each combination of incline level and machine. 

(b) Create an indicator variable for brand of treadmill, say 
Treadmill 5 1 for Cybex and Treadmill 5 0 for LifeFit-
ness. Fit a multiple regression model to predict Calories 
from Mph, IndSlow, NoIncline, 2%Incline, and Treadmill. 

(c) Does the model provide a good fit for these data? 
Explain. 

(d) Is there a significant difference in the relationship 
between calories and speed for the two different 
treadmills? 

29.49 Metabolic rate and body mass. Metabolic rate, the rate at 
which the body consumes energy, is important in studies 
of weight gain, dieting, and exercise. The accompanying 
table gives data on the lean body mass and resting meta-
bolic rate for 12 women and 7 men who are subjects in a 
study of dieting. Lean body mass, given in kilograms, is a 
person’s weight leaving out all fat. Metabolic rate is mea-
sured in calories burned per 24 hours, the same calories 
used to describe the energy content of foods. The research-
ers believe that lean body mass is an important influence 
on metabolic rate. DA

TA METAB2 

Subject Sex Mass Rate Subject Sex Mass Rate 

1 M 62.0 1792 11 F 40.3 1189 

2 M 62.9 1666 12 F 33.1 913 

3 F 36.1 995 13 M 51.9 1460 

4 F 54.6 1425 14 F 42.4 1124 

5 F 48.5 1396 15 F 34.5 1052 

6 F 42.0 1418 16 F 51.1 1347 

7 M 47.4 1362 17 F 41.2 1204 

8 F 50.6 1502 18 M 51.9 1867 

9 F 42.0 1256 19 M 46.9 1439 

10 M 48.7 1614 
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table 29.13  treadmill display’s claimed calories per hour by speed for a 175-pound man 

Incline Incline 

Mph Cybex-0% Cybex-2% Cybex-4% Life-0% Life-2% Life-4% 

1.5 174 207 240 178 212 246 

2.0 205 249 294 10 256 301 

2.5 236 291 347 243 300 356 

3.0 267 333 400 276 343 411 

3.5 372 436 503 308 387 466 

4.0 482 542 607 341 431 522 

4.5 592 649 709 667 718 769 

5.0 701 756 812 732 789 845 

5.5 763 824 885 797 860 922 

6.0 825 892 959 863 930 998 

6.5 887 960 1032 928 1015 1075 

7.0 949 1027 1105 993 1072 1151 

7.5 1011 1094 1178 1058 1143 1228 

8.0 1073 1163 1252 1123 1214 1304 

8.5 1135 1230 1325 1189 1285 1381 

9.0 1197 1298 1398 1254 1356 1457 

9.5 1259 1365 1470 1319 1426 1534 

10.0 1321 1433 1544 1384 1497 1610 

(a)  Make a scatterplot of the data, using different sym-
bols or colors for men and women. Summarize 
what you see in the plot. 

(b)  Use the model with two regression lines to predict 
metabolic rate from lean body mass for the different 
genders. Summarize the results. 

(c)  The parameter associated with the interaction
term is often used to decide if a model with paral-
lel regression lines can be used. Test the hypothesis  
that this parameter is equal to zero, and comment  
on whether or not you would be willing to use the  
more restrictive model with parallel regression
lines for these data.  

29.50  Student achievement and self-concept. In order to de-
termine if student achievement is related to self- 
concept, as measured by the Piers-Harris Children’s 
Self-Concept Scale, data were collected on 78 seventh-
grade students from a rural midwestern school.   
Table  29.14  shows the records for the first 10 students  
on the following variables:16 

DA
TA ACHIEVE 

Variable Description 

OBS Observation number (n 5 78, some  
gaps in numbers) 

GPA GPA from school records 

IQ IQ test score from school records 

AGE 

SEX 

Age in years, self-reported 

1 5 F, 2 5 M, self-reported 

RAW Raw score on Piers-Harris Children’s 
Self-Concept Scale 

C1 Cluster 1 within self-concept: behavior 

C2 Cluster 2: school status 

C3 

C4 

C5 

C6 

Cluster 3: physical 

Cluster 4: anxiety 

Cluster 5: popularity 

Cluster 6: happiness 

We will investigate the relationship between GPA and 
only three of the explanatory variables: 

•	  IQ, the student’s score on a standard IQ test 

•	  C2, the student’s self-assessment of his or her school  
status  

•	  C5, the student’s self-assessment of his or her 
popularity 

Use statistical software to analyze the relationship 
between students’ GPA and their IQ, self-assessed 
school status (C2), and self-assessed popularity (C5). 

(a)   One observation is an extreme outlier when all three  
explanatory variables are used. Which observation  



  

 

Exercises 29-63 

is this? Give the observation number, and explain  
how you found it using regression output. Find this  
observation in the data list. What is unusual about it? 

(b)  Fit a multiple regression model for predicting IQ 
from the explanatory variables LSS, READ, and 
EST. Are you happy with the fit of this model?  
Explain. 

(c)  Use residual plots to check the appropriate condi-
tions for your model. 

(d)  Only two of the three explanatory variables in your 
model in part (b) have parameters that are signifi-
cantly different from zero according to the individ-
ual t tests. Drop the explanatory variable that is not 
significant, and add the interaction term for the two 
remaining explanatory variables. Are you surprised 
by the results from fitting this new model? Explain 
what happened to the individual t tests for the two 
explanatory variables. 

29.52  Florida real estate. The table on text page 628 gives  
the appraised market values and actual selling prices  
(in thousands of dollars) of condominium units sold  
in a beachfront building over a 164-month period. 

TA
DA CONDOS 

table 29.14   Student achievement and self-concept scores data for 78 seventh-grade 
students 

OBS GPA IQ AGE SEX RAW C1 C2 C3 C4 C5 C6 

001 7.940 111 13 2 67 15 17 13 13 11 9 

002 8.292 107 12 2 43 12 12 7 7 6 6 

003 4.643 100 13 2 52 11 10 5 8 9 7 

004 7.470 107 12 2 66 14 15 11 11 9 9 

005 8.882 114 12 1 58 14 15 10 12 11 6 

006 7.585 115 12 2 51 14 11 7 8 6 9 

007 7.650 111 13 2 71 15 17 12 14 11 10 

008 2.412 97 13 2 51 10 12 5 11 5 6 

009 6.000 100 13 1 49 12 9 6 9 6 7 

010 8.833 112 13 2 51 15 16 4 9 5 8 

Variable Description 

OBS  Observation number for each individual 

SEX  Sex of the individual 

LSS  Median grade level of student’s selection of 
“best for me to read” (8 repetitions, each with
four choices at grades 3, 5, 7, and 9 level) 

IQ  IQ score 

READ  Score on reading subtest of the Metropolitan 
Achievement Test 

EST  Student’s own estimate of his or her reading 
ability, scale 1 to 5 (1 5 low) 

 

(b)  Software packages often identify unusual or influ-
ential observations. Have any observations been 
identified as unusual or influential? If so, identify 
these points on a scatterplot of GPA versus IQ. 

(c)  C2 (school status) is the aspect of self-concept most  
highly correlated to GPA. If we carried out the simple  
linear regression of GPA on C2, what percent of the  
variation in students’ GPAs would be explained by  
the straight-line relationship between GPA and C2? 

(d)  You know that IQ is associated with GPA, and you 
are not studying that relationship. Because C2 and 
IQ are positively correlated (r  5 0.547), a signifi-
cant relationship between C2 and GPA might oc-
cur just because C2 can “stand in” for IQ. Does C2 
still contribute significantly to explaining GPA after 
we have allowed for the relationship between GPA 
and IQ? (Give a test statistic, its  P-value, and your 
conclusion.) 

(e)  A new student in this class has IQ 115 and C2 score 
14. What do you predict this student’s GPA to be? 
(Just give a point prediction, not an interval.) 

29.51  Children’s perception of reading difficulty. Table 29.15  
contains measured and self-estimated reading ability  
data for 60 fifth-grade students randomly sampled  
from one elementary school. The variables are list-
ed in the accompanying table. DA

TA READING 

17 

(a)  Is the relationship between measured (READ) and 
self-estimated (EST) reading ability the same for 
both boys and girls? Create an indicator variable for 
gender and fit an appropriate multiple regression 
model to answer the question. 
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table 29.15 Measured and self-estimated reading ability data for 60 fifth-grade students 
randomly sampled from one elementary school 

OBS SEX LSS IQ READ EST OBS SEX LSS IQ READ EST 

1 F 5.00 145 98 4 31 M 7.00 106 55 4 

2 F 8.00 139 98 5 32 M 6.00 124 70 4 

3 M 6.00 126 90 5 33 M 8.00 115 82 5 

4 F 5.33 122 98 5 34 M 8.40 133 94 5 

F 5.60 125 55 4 35 F 5.00 116 75 4 

6 M 9.00 130 95 3 36 F 6.66 102 80 3 

7 M 5.00 96 50 4 37 F 5.00 127 85 4 

8 M 4.66 110 50 4 38 M 6.50 117 88 5 

9 F 4.66 118 75 4 39 F 5.00 109 70 3 

F 8.20 118 75 5 40 M 5.50 137 80 4 

11 M 4.66 101 65 4 41 M 6.66 117 55 4 

12 M 7.50 142 68 5 42 M 6.00 90 65 2 

13 F 5.00 134 80 4 43 F 4.00 103 30 1 

14 M 7.00 124 10 4 44 F 5.50 114 74 5 

M 6.00 112 67 4 45 M 5.00 139 80 5 

16 M 6.00 109 83 3 46 M 6.66 101 70 2 

17 F 5.33 134 90 4 47 F 8.33 122 60 4 

18 M 6.00 113 90 5 48 F 6.50 105 45 2 

19 M 6.00 81 55 3 49 F 4.00 97 45 1 

F 6.00 113 83 4 50 M 5.50 89 55 4 

21 M 6.00 123 65 4 51 M 5.00 102 30 2 

22 F 4.66 94 25 3 52 F 4.00 108 10 4 

23 M 4.50 100 45 3 53 M 4.66 110 40 1 

24 F 6.00 136 97 4 54 M 5.33 128 65 1 

M 5.33 109 75 4 55 M 5.20 114 15 2 

26 F 3.60 131 70 4 56 M 4.00 112 62 2 

27 M 4.00 117 23 3 57 F 3.60 114 98 4 

28 M 6.40 110 45 3 58 M 6.00 102 52 2 

29 F 6.00 127 70 2 59 F 4.60 82 23 1 

F 6.00 124 85 5 60 M 5.33 101 35 2 

(a) Find the multiple regression model for predicting 
selling price from appraised market value and month. 

(b) Find and interpret the squared multiple correlation 
coefficient for your model. 

(c) What is the regression standard error for this model? 

(d) Hamada owns a unit in this building appraised at 
$802,600. Use your model to predict the selling 
price for Hamada’s unit at month 164. 

(e) Plot the residuals for your model against both explan-
atory variables and comment on the appearance of 
these plots. 

29.53 Diamonds. Consider the diamond data of which Table 
29.4 (page 29-30) is an excerpt. We are interested in 
predicting the total price of a diamond. Fit a simple 
linear regression model using Carat as the explanatory 
variable. DA

TA DIAMND 
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(a) Identify the least-squares line for predicting Total 
Price from Carat. 

(b) Does the model provide a good fit? Comment on 
the residual plots. How much variation in price can 
be explained with this regression line? 

(c) Create a new variable Caratsq 5 Carat 3 Carat. 
Fit a quadratic model using Carat and Caratsq and 
verify that your estimates for each parameter match 
those provided in Example 29.15 (page 29-29). 

(d) Does the quadratic term Caratsq improve the fit of 
the model? Comment on the residual plots and the 
value of R2. 

(e) The individual t statistics look at the contribution 
of each variable when the other variables are in the 
model. State and test the hypotheses of interest for 
the quadratic term in your model. 

29.54 Diamonds. Use the data in Table 29.4 (page 29-30) to 
fit the multiple regression model with two explanatory 
variables, Carat and Depth, to predict the TotalPrice of 
diamonds. Don’t forget to include the interaction term 

DA
TA

 

 DIAMND in your model.

(a) Identify the estimated multiple regression equation. 

(b) Conduct the overall F test for the model. 

(c) Identify the estimated regression parameters, stan-
dard errors, and t statistics with P-values. 

(d) Prepare residuals plots and comment on whether 
the conditions for inference are satisfied. 

(e) What percent of variation in Total Price is explained 
by this model? 

(f) Find an estimate for � and interpret this value. 

29.55 Catalog spending. This realistic modeling project 
requires much more time than a typical exercise. 
Table 29.16 shows catalog-spending data for the first 
9 of 200 randomly selected individuals from a very 
large (more than 20,000 households) database.18 We 
are interested in developing a model to predict 
spending ratio. There are no missing values in the 
data set, but there are some incorrect entries that 
must be identified and removed before completing 
the analysis. Income is coded as an ordinal value, 
ranging from 1 to 12. Age can be regarded as quanti-
tative, and any value less than 18 is invalid. Length of 
residence (LOR) is a value ranging from zero to some-
one’s age. LOR should not be higher than age. All of 
the catalog variables are represented by indicator 
variables; either the consumer bought and the vari-
able is coded as 1 or the consumer didn’t buy and the 
variable is coded as 0. The other variables can be 
viewed as indexes for measuring assets, liquidity, and 
spending. Find a multiple regression model for pre-
dicting the amount of money that consumers will 
spend on catalog shopping, as measured by spending 
ratio. Your goal is to identify the best model you can. 
Remember to check the conditions for inference as 
you evaluate your models. DA

TA CATALOG 

Exploring thE WEb 

29.56 Are Gas Prices Driving Elections? The Chance website discusses the use of regression 
to predict the margin of victory in presidential elections since 1948 from the price of 
gas (in 2008 dollars). Read the article at www.causeweb.org/wiki/chance 
/index.php/Chance_News_72. Use the data in the article to do the following. 

(a) Fit a simple linear regression model using gas price to predict margin of victory. 
Do your results agree with those reported in the article? 

(b) Use the incumbent party as an indicator variable (code Democrats as 1 and Re-
publicans as 0), and add this to your simple linear regression model. What is the 
value of R2? 

(c) Now add gross domestic product (GDP) to your regression model in part (b). 
What is the value of R2? 

29.57 Historical Tuition and Fees. You can find data on past tuition and fees at several 
colleges by doing a Google search on “historical tuition and fees.” Select one of the 
colleges you find and determine whether the data show the same pattern as you 
observed in Exercise 29.25 (page 29-45). You should try to find data going back at 
least 20 years (at the time we searched, we were able to find data for Clemson Uni-
versity, University of Pennsylvania, University of California, Univeristy of Colorado, 
Oregon State University, and William & Mary). The data may not be in spreadsheet 
format, and you may have to enter or cut and paste it into a spreadsheet to carry out 
your analysis. 

42578_ch29_online.indd 66 9/6/17 12:12 PM 

www.causeweb.org/wiki/chance/index.php/Chance_News_72.
www.causeweb.org/wiki/chance/index.php/Chance_News_72.


  

29-67Notes and Data Sources 

Notes and Data Sources 
1.  Data on gas mileage are from the U.S. Department of Energy website at http:// 

www.fueleconomy.gov/feg/download.shtml. The data given are a ran-
dom sample of size 48 from all 1209 2016 model cars and trucks listed at the website. 

2.  Data were estimated from a scatterplot in Philipp Heeb, Mathias Kolliker, and Heinz 
Richner, “Bird-ectoparasite interactions, nest humidity, and ectoparasite community 
structure,” Ecology, 81 (2000), pp. 958–968. 

3.  For more details, see H. Hoppeler and E. Weibel, “Scaling functions to body size: Theo-
ries and facts,” Journal of Experimental Biology, 208 (2005), pp. 1573–1574. 

4.  We thank Professor Haruhiko Itagaki and his students, Andrew Vreede and Marissa
Stearns, for providing data on tobacco hornworm caterpillars (Manduca sexta). 

 

5.  For more details, see Michael H. Kutner, Christopher J. Nachtsheim, and John Neter, 
Applied Linear Regression Models, 4th ed., McGraw-Hill, 2004. 

6.  Diamond database downloaded from AwesomeGems.com on July 28, 2005. 
7.  We thank Terry Klopcik for providing data from a physics lab on radioactive decay. 
8.  We thank David Cameron for providing data from a clothing retailer. 
9.  Found online at https://avillage.web.virginia.edu/iaas/instreports  

/studat/dd/fees.htm. 
10.  The data in Table 29.8 are part of a larger data set in the Journal of Statistics Education  

archive, accessible via the Internet. The original source is Pekka Brofeldt, “Bidrag till 
kaennedom on fiskbestondet i vaara sjoear. Laengelmaevesi,” in T. H. Jaervi, Finlands 
fiskeriet, vol. 4, Meddelanden utgivna av fiskerifoereningen i Finland, Helsinki, 1917. The 
data were put in the archive (with information in English) by Juha Puranen of the Uni-
versity of Helsinki. 

11.  P. Velleman, ActivStats 2.0, Addison Wesley Interactive, 1997. 
12.  These data were provided by Professor Shelly MacDermid, Department of Child  

Development and Family Studies, Purdue University, from a study reported in S. M. 
MacDermid et al., “Is small beautiful? Work-family tension, work conditions, and orga-
nizational size,” Family Relations, 44 (1994), pp. 159–167. 

13.  Data from the U.S. Historical Climatology Network, http://cdiac.ornl.gov  
/epubs/ndp/ushcn/ushcn_map_interface.html. 

14.  I thank Ray and Pat Heithaus for providing data on the pine seedlings at the Brown 
Family Environmental Center. 

15.  Data provided by Robert Dale, Purdue University. 
16.  Darlene Gordon, “The relationships among academic self-concept, academic achieve-

ment, and persistence with academic self-attribution, study habits, and perceived school 
environment,” PhD thesis, Purdue University, 1997. 

17.  James T. Fleming, “The measurement of children’s perception of difficulty in reading 
materials,” Research in the Teaching of English, 1 (1967), pp. 136–156. 

18.  I thank David Cameron for providing the random sample of 200 observations from a 
large catalog-spending database. 
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