Chapter 22. Two Categorical Variables: The Chi-Square Test

Topics covered in this chapter:

- Two-Way Tables
- The Chi-Square Test

Two-Way Tables

Example 22.1: Where do young people live?

The Problem: A sample survey asked a random sample of young adults, "Where do you live now?" How does living arrangement vary by the age of the young person? Even though age is quantitative, the two-way table treats age as a categorical variables by dividing the young people into four age groups.

- 1. Open the data set *ta22-01.por*. Notice that all combinations of *Live* and *Age* are listed in the first two columns. The count of young people is given in the third column.
- 2. Click Data then Weight Cases.
- 3. Click on Weight cases by and move *Count* into the Frequency Variable box. Click OK.

🚰 Weight Cases	×
	Do not weight cases Weight cases by Frequency Variable:
OK Paste	Reset Cancel Help

- 4. Change counts to percents.
 - a. Click Analyze, then Descriptive Statistics, then Crosstabs.

- b. Move *Live* into the **Row**(s) box.
- c. Move *Age* into the **Column**(s) box.

🚰 Crosstabs	×
Count Rgw(s): Image: Column(s): Image: Column(s): <	Statistics Cells Eormat
Display clustered bar charts	
Suppress tables	
OK Paste Reset Cancel Help	

- d. Click the **Cells** button.
- e. Under **Percentages** put a check next to **Column**.

🚰 Crosstabs: Cell Dis	play 🗶
Counts	
✓ Observed	
Expected	
Percentages	Residuals
<u>R</u> ow	Unstandardized
Column	Standardized
	Adjusted standardized
Noninteger Weigł	its
Round cell count	ts ORound case <u>w</u> eights
🔘 Truncate ceļi co	unts 🔘 Truncate case weig <u>h</u> ts
◯ No adjust <u>m</u> ents	
Continue	Cancel Help

- f. Click Continue.
- g. Click OK. A new window will pop up with your output.

					Age		
			Age19	Aqe20	Age21	Aqe22	Total
Live	Another	Count	37	47	40	38	162
		% within Age	6.9%	6.1%	5.0%	4.3%	5.4%
	Group	Count	58	60	49	25	192
		% within Age	10.7%	7.8%	6.1%	2.9%	6.4%
	Other	Count	5	2	3	9	19
		% within Age	.9%	.3%	.4%	1.0%	.6%
	OwnPlac	Count	116	279	372	487	1254
		% within Age	21.5%	36.4%	46.4%	55.5%	42.0%
	Parents	Count	324	378	337	318	1357
		% within Age	60.0%	49.3%	42.1%	36.3%	45.5%
	Total	Count	540	766	801	877	2984
		% within Age	100.0%	100.0%	100.0%	100.0%	100.0%

Live * Age Crosstabulation

The Chi-Square Test

Example 22.6: Are cell-only telephone users different?

- **The Problem:** Random digit dialing telephone surveys do not call cell phone numbers. If the opinions of people who have only cell phones differ from those of people who still have the landline service, the poll results may not represent the entire adult populations. The Pew Research Center interviewed separate random samples of cell-only and landline telephone users. In SPSS carry out a chi-square test for:
 - Ho: There is no relationship between type of phone service and political party affiliation.
 - Ha: There is some relationship type of phone service and political party affiliation.
 - 1. Enter data into SPSS.
 - a. Go to Variable View.
 - b. Under **Name** in row 1, type *Party*, corresponding to the political party affiliation. Under **Type**, select **String**. Under Width, select "10".
 - c. Under **Name** in row 2, type *Service*, corresponding to the type of phone service. Under **Type**, select **String**.

d. Under **Name** in row 3, type *Count*, corresponding to the number of phone users that correspond to the service type and political party affiliation of that row. Under **Type**, select **Numeric**.

🚰 *Untitled3	[DataSet2] - SPSS	Data Editor			_ [×		
<u>F</u> ile <u>E</u> dit ⊻ie	<u>File Edit View Data Transform Analyze Graphs Utilities Add-ons Window Help</u>							
🗁 📙 🚔	🗁 🖬 📇 📅 🤝 🐡 🕌 💷 🕼 👭 📲 🏥 🖽 🐃 👒 📎							
	Name	Туре		Width	Decimals			
1	Party	String		10	0	-		
2	Service	String	l	3	0	200		
3	Count	Numeric	1	3	0			
4								
5								
0	ĺ ◀							
Data View	Variable View							
		SPS	SS P	rocessor is	ready			

e. Go to **Data View** and enter the data.

🚼 *Untitled3 [DataSet2] - SPS	S Data Editor			_ _ X		
<u>F</u> ile <u>E</u> dit ⊻i	iew <u>D</u> ata <u>T</u> ra	ansform <u>A</u> nalyz	:e <u>G</u> raphs <u>U</u> t	tilities Add- <u>o</u> n	s <u>W</u> indow <u>H</u> elp		
🗁 📙 🚔	📴 🔶 👼	🏪 📭 📴	M 🔸 📩	📰 🦺 📰	کې 🕘 🚭		
17 : Service				Vi	sible: 3 of 3 Variables		
	Party	Service	Count	var	var		
1	Democrat	Cell	49				
2	Democrat	Landline	47				
3	Neither	Cell	15				
4	Neither	Landline	Landline 27				
5	Republican	Cell	32				
6	Republican	Landline	30				
7							
Data View	Variable View						
			SPSS Pro	ocessor is read	у		

- g. Click **Data** then **Weight Cases**.
- h. Click on Weight cases by and move *Count* into the Frequency Variable box.

i. Click OK.

🔛 Weight Cases 📃	(
 Do not weight cases Weight cases by Frequency Variable: ✓ Count 	
Current Status: Do not weight cases	
OK Paste Reset Cancel Help	

- 2. Perform the chi-square test.
 - a. Click **Analyze**, scroll down to **Descriptive Statistics**, then click on **Crosstabs**.
 - b. Move *Party* into the **Row(s)** box.
 - c. Move *Service* into the **Column**(s) box.

📴 Crosstabs		×
Count	Row(s): Party Column(s): Service Layer 1 of 1 Previous Next Next	Statistics Cells Eormat
Display clustered <u>b</u> ar charts		
Suppress <u>t</u> ables		
ок	Paste Reset Cancel Help	o

- d. Click the **Statistics** button at the right side of the window.
- e. Put a check in the box in front of **Chi-square**.
- f. Click Continue.

🚺 Crosstabs: Statistics	X				
✓ Chi-square	Correlations				
Nominal	Ordinal				
Contingency coefficient	<u>G</u> amma				
Phi and Cramer's V	Somers' d				
Lambda	Kendall's tau- <u>b</u>				
Uncertainty coefficient	🗌 Kendall's tau- <u>c</u>				
Nominal by Interval	🗖 <u>K</u> appa				
Eta	Risk				
	<u>M</u> cNemar				
Cochran's and Mantel-Haenszel statistics Test common odds ratio equals: 1					
Continue Cancel	Help				

g. To include expected cell counts in your **Crosstabulation** table in your output, click **Cells**, and under **Counts** put a check mark next to **Expected.**

🚰 Crosstabs: Cell Di:	splay 🔀
Counts	
☑ <u>O</u> bserved	
Expected	
Percentages	Residuals
<u>R</u> ow	Unstandardized
<u>C</u> olumn	Standardized
<u>T</u> otal	Adjusted standardized
Noninteger Weigl	nts
Round cell count	ts 🔘 Round case <u>w</u> eights
🔿 Truncate ceḷi co	unts O Truncate case weig <u>h</u> ts
◯ No adjust <u>m</u> ents	
Continue	Cancel Help

- h. Click Continue. Then click OK.
- i. A new window will pop up with your output.

	Cases					
	Valid Missing Total				tal	
	N Percent N Percent N Percent					Percent
Grade * Activities	119	100.0%	0	.0%	119	100.0%

Case Processing Summary

			Activities			
			2 to 12 hours	Less than 2 hours	More than 12 hours	Total
Grade	C or better	Count	68	11	3	82
		Expected Count	62.7	13.8	5.5	82.0
	D or F	Count	23	9	5	37
		Expected Count	28.3	6.2	2.5	37.0
Total		Count	91	20	8	119
		Expected Count	91.0	20.0	8.0	119.0

Grade * Activities Crosstabulation

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	6.926ª	2	.031
Likelihood Ratio	6.520	2	.038
N of Valid Cases	119		

 a. 1 cells (16.7%) have expected count less than 5. The minimum expected count is 2.49.

Chapter 22 Exercises

- 22.1 Facebook at Penn State.
- 22.3 Attitudes towards recycled products.
- 22.5 Facebook at Penn State.
- 22.13 Saving birds from windows.
- 22.15 Police harassment?
- 22.17 What's your sign?
- 22.29 Free speech for racists?
- 22.43 How are schools doing?
- 22.45 Market research.
- 22.47 Party support in brief.

Chapter 22 SPSS Solutions

22.1 To find the percent of University Park students who fall in each Facebook category, add the values given for University Park (68 + 55 + 215 + 640 = 978). Then, divide each category's number by the total. We see that about 7% of the University Park students do not use Facebook and about 5.6% use it several times per month or less. Continue with the other two categories, to find that about 22% use use Facebook at least once a week and 65.4% use it at least once a day.

To compare the distributions, we'll make a stacked bar chart of the data with one bar for each of the University Park and Commonwealth students. Open data file *ex22-01*. To create the chart, click **Graphs**, **Legacy Dialogs**, **Bar**. We want the **Stacked** bar chart where data are **Summaries for groups of cases**. We'll create an initial chart (and modify it later with the Chart Editor) by defining it as below (don't forget to give your graph a **<u>Titles</u>**).

Define Stacked Bar: Summ	aries for Groups of Cases	5	X
	Bars Represent N of cases Qum. N Other statistic (e.g., m) Other statistic (e.g., m) Variable: MEAN(Cound Change		<u>I</u> itles Options
	Category Axis: Category Axis: Campus Define Stacks by Category Axis: Category Axis: Cate] :]	1

It's hard to compare the two distributions in the initial graph, because there were different numbers of students surveyed at the different campuses.

Click in the graph to bring up the Chart Editor, then click **Options**, **Scale to 100%**. You can also click in the *y*-axis label and remove it by unchecking the **Display axis title** box (with percents showing, this is not needed). If you wish, click the **Variables** tab and change the **Style** for **Use** from Color to pattern. **Apply** and **Close** the Chart Editor.

Facebook Use at Penn State Campuses

It is clear that University Park students are much more likely to be daily Facebook users; Commonwealth students are more likely to not use it at all; the "occasional" users seem similar.

22.3 Parts (a) and (b) want us to compute tests for a difference in proportions. We first compute the test for those who do not use Facebook. There were 68/978 = 0.0695 University Park students who do not use it and 248/875 = 0.2834 Commonwealth students who do not. The pooled proportion is (68+248)/(978+875) = 0.1705.

Compute Variable			1	
			Z	
<u>T</u> arget Variable:		Numeric Expression:	-1	2.22
Z	=	(.06952834)/sqrt(.1705*.8295*(1/978+1/875))		

With a test statistic of z = -12.22, we do not really need to compute the *P*-value, as this will be (essentially) 0. There is a difference. University Park students are definitely more likely to use Facebook.

We repeat the computation for those using Facebook at least once a week. The observed proportions are: University Park, 215/978 = 0.2198 and Commonwealth, 157/875 = 0.1794. The pooled proportion is (215+157)/(978+875) = 0.2008.

Compute Variable				Z
<u>T</u> arget Variable: Z	=	Num <u>e</u> ric Expression: (.17942198)/sqrt(.2008*.7992*(1/978+1/8	75))	-2.17
Compute Variable				
				Pvalue
<u>T</u> arget Variable: Pvalue		Numeric Expression: = 2*CDF.Normal(-2.17,0,1)		0.0300

The difference is not quite as significant, but is still significant at the 0.05 level (P-value 0.030). Again, University Park students are more likely to use Facebook at least once a week.

These two P-values can't tell use about the two distributions for all four outcomes because they don't represent all the categories. Further, they are really dependent – if a student is in one category, they can't be in another, but we don't know which other category.

22.5 If there is no relationship, the expected counts are $(R \times C)/T$, where R is the row total, C is the column total, and T is the grand total. The grand total for the table is 910 + 627 = 1537. There were a total of 55 + 76 = 131 students who use Facebook several times a month or less. The expected count of these for Commonwealth students is 53.44. Similarly, the Commonwealth expected count for at least weekly users is 151.75 and for at least once a day users, the expected count is 421.81. The expected counts should total 627; we see they do.

The general trend for these older Commonwealth students is that they are more likely to be occasional Facebook users than daily users; other claims on their time is most likely the reason.

22.13 The expected counts are 53*1/3 = 17.6667, since if the tilts made no difference, there should be an equal number of strikes on each type of window. We enter the observed and expected counts in two variables and compute the components of the chi-square statistic as shown below. Sum the components to find $\chi^2 = 16.11$.

🚰 Compute Variable			observe	expect	chis
Townshilds shallow		Numeric Europeices	31	17.6667	10.06
<u>T</u> arget Variable: chis		Numeric Expression: (observe-expect)**2/expect	14	17.6667	0.76
Chio	=	(absolve-expect) Zrexpect	8	17.6667	5.29
Compute Variable					
Compace Variable				Pvalue	
<u>T</u> arget Variable:		Numeric Expression:		0.0	0003
Pvalue	=	1-CDF.Chis(16.11,2)			

22.15 We entered the data as shown at right. Our null hypothesis is that the counts agree with the population proportions; the alternate is that they do not agree. SPSS still doesn't like summarized data. We add the number of observations to find that 401 + 480 + 20 = 901 citations represented. We compute the test statistic entries (and then sum them) to find $\chi^2 = 79.3$.

Proportion	Count	Age
0.328	401	16 to 29
0.594	480	30 to 59
0.078	20	60 up

446

With a test statistic of $\chi^2 = 119.84$ and *P*-value of 0.000, we conclude that the actual citations do not match the population distributions. It is clear from the above the the largest contributions come from the youngest and oldest age groups. The younger ones are cited much more than expected, the older ones much less.

22.17 If births are equally spread throughout the year, each sign should have 1/12 of them. We have H₀: all signs have probability 1/12. H_A is that H₀ is false. We will perform a χ^2 goodness-of-fit test with the given data. (It is reasonable to assume the GSS is a random survey of all US adults.) The data given represent 4344 individuals. Under the null hypothesis, we expect 4344/12 = 362 individuals in each sign. We omit details (see Exercises 22.113 and 22.15 above), and find $\chi^2 = 19.76$ with *P*-value 0.049, barely significant at the 5% level. We reject H₀ and conclude births are not equally spread through the year. We can see that Aries and Virgo make the largest contributions to the statistic – Aries (a winter month) has a lower than expected count and Virgo (a fall month) has a higher than expected count.

22.29 If we combine the races, we have 140 + 976 + 121 = 1237 individuals who would let the racist speak and 129 + 480 + 131 = 740 who would not, making a total sample of size n = 1977. The observed proportion who would allow a racist to speak is $\hat{p} = 1237/1977 = 0.6257$.

Based on this GSS survey, between 59.8% and 65.4% of U.S. adults think a racist should be allowed to speak, with 99% confidence.

There were 269 Blacks, of whom 140/269 = 52.0% thought racists should be allowed to speak. For Whites, the percent is 976/(976+480) = 67.0%; for Others we have 121/252 = 48.0%. Both the Blacks and Others have percentages much less than Whites, but there were more Whites in the sample. To perform the chi-square test, enter the data as below.

Race	Allow	Count
black	yes	140
black	no	129
white	yes	976
white	no	480
other	yes	121
other	no	131

Click Data, Weight Cases. Click to weight cases by Count, then OK.

🙀 Weight Cases	×
	 Do not weight cases Weight cases by Frequency Variable: Count

Now, click <u>Analyze</u>, <u>Descriptive Statistics</u>, <u>Crosstabs</u>. Click to enter Allow as the row and **Race** as the column. Now, click the <u>Statistics</u> button and check the box to ask for the Chi-square. <u>Continue</u> and click the <u>Cells</u> button. Click to ask for the observed and expected counts. <u>Continue</u> and <u>OK</u> computes the test.

Crosstabs		×
💫 Count	Row(s):	Statistics Cells Eormat
	Column(s):]

We have the table below with both observed and expected counts.

			Race			
			black	other	white	Total
Allow	no	Count	129	131	480	740
		Expected Count	100.7	94.3	545.0	740.0
	yes	Count	140	121	976	1237
		Expected Count	168.3	157.7	911.0	1237.0
	Total	Count	269	252	1456	1977
		Expected Count	269.0	252.0	1456.0	1977.0

Allow * Race Crosstabulation

Chi-Square Tests

	Value	df	Asymp. Sig. (2- sided)
Pearson Chi-Square	47.899 ^a	2	.000
Likelihood Ratio	46.952	2	.000
N of Valid Cases	1977		

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 94.32.

The *P*-value of the test is 0.000. We have overwhelming evidence that more whites would allow a racist to speak than Blacks or people of other ethnicities. Note that the largest contributions to the test statistic are from the Other column.

22.43 We're using the data layout from file ex22-43. This file has race in a column, school opinion in one, and the counts in a third. We again use the variable Count to weight cases, then use <u>Analyze</u>, <u>Descriptive Statistics</u>, <u>Crosstabs</u> as described in Exercise 22.29.

Chi-Square Tests						
	Value	df	Asymp. Sig. (2- sided)			
Pearson Chi-Square	22.426 ^a	8	.004			
Likelihood Ratio	22.897	8	.003			
N of Valid Cases	605					

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 21.26.

			Race				
			black	white	hispanic	Total	
Schools	don't	Count	22	14	28	64	
	_	Expected Count	21.4	21.3	21.4	64.0	
	excel	Count	12	22	34	68	
		Expected Count	22.7	22.6	22.7	68.0	
	fair	Count	75	60	61	196	
		Expected Count	65.4	65.1	65.4	196.0	
	good	Count	69	81	55	205	
		Expected Count	68.4	68.1	68.4	205.0	
	poor	Count	24	24	24	72	
		Expected Count	24.0	23.9	24.0	72.0	
	Total	Count	202	201	202	605	
		Expected Count	202.0	201.0	202.0	605.0	

Schools * Race Crosstabulation

The differences in the distributions are statistically significant (P = 0.004). To see the departures from the null hypothesis, examine the expected counts. Blacks are less likely to call schools Excellent than expected (12 observed versus 22.7 expected) while Hispanics are more likely to call them Excellent (34 observed and 22.7 expected) and less likely to call them Good (55 versus 68). Blacks are more likely to call them Good (75 versus 65.4). There seems to be no real differences among the ethnicities on calling the schools Poor.

22.45 We've used the data in *ex22-45*. As in the last two exercises, we use Data, Weight Cases to weight the results by Count. We then use <u>Analyze</u>, <u>Descriptive Statistics</u>, <u>Crosstabs</u> to recreate the table and add the expected counts (click <u>Cells</u>, <u>Expected</u>).

			Group					
			hardhot	hardwarm	softhot	softwarm	Total	
Newpref	no	Count	30	42	27	53	152	
		Expected Count	30.9	47.2	24.0	49.8	152.0	
	yes	Count	42	68	29	63	202	
		Expected Count	41.1	62.8	32.0	66.2	202.0	
	Total	Count	72	110	56	116	354	
		Expected Count	72.0	110.0	56.0	116.0	354.0	

Newpref * Group Crosstabulation

Chi-Square Tests							
Value df Asymp. Sig. (
Pearson Chi-Square	2.058 ^a	3	.560				
Likelihood Ratio	2.062	3	.560				
N of Valid Cases	354						

a. 0 cells (.0%) have expected count less than 5. The minimum

expected count is 24.05.

There is no significant difference between the person's laundry practice and their preference for the new product (P = 0.560), although it appears that the people with soft water seem to prefer the standard product (their expected counts are somewhat smaller than the observed) and the people with hard water seem to prefer the new product (their expected counts are also a bit smaller than observed).

22.47 The new table will be as shown below.

	None	High School	Jr. college	Bachelor	Graduate
Democrat leaning	279	996	156	313	218
Republican leaning	135	731	129	336	128

To see if support differs by level of education, we enter the data as shown below. As in the last exercises, we weight cases by Count and use Analyze, Descriptive Statistics, Crosstabs to compute the test. Do not forget to ask for the Chi-squared <u>Statistic</u> and the <u>Cell Expected</u> values.

Leaning	Education	Count
Democrat	None	279
Democrat	HS	996
Democrat	JC	156
Democrat	Bachelor	313
Democrat	Graduate	218
Republican	None	135
Republican	HS	731
Republican	JC	129
Republican	Bachelor	336
Republican	Graduate	128

			Education					
			Bachelor Graduate HS JC None Total					
Leaning	Democrat	Count	313	218	996	156	279	1962
		Expected Count	372.2	198.4	990.5	163.5	237.4	1962.0
	Republican	Count	336	128	731	129	135	1459
		Expected Count	276.8	147.6	736.5	121.5	176.6	1459.0
	Total	Count	649	346	1727	285	414	3421
		Expected Count	649.0	346.0	1727.0	285.0	414.0	3421.0

Leaning * Education Crosstabulation

Chi-Square	Tests
------------	-------

	Value	df	Asymp. Sig. (2- sided)
Pearson Chi-Square	44.539 ^a	4	.000
Likelihood Ratio	44.806	4	.000
N of Valid Cases	3421		

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 121.55.

With a 0.000 *P*-value, we conclude there is a difference in political leaning with education level. People with no high school education are more likely to lean Democrat as are people with either a Bachelor's or graduate degree; in other words, the Democrats seem to draw support from either people with little or a lot of education.