Chapter 22. Two Categorical Variables: The ChiSquare Test

Topics covered in this chapter:

- Two-Way Tables
- The Chi-Square Test

Two-Way Tables

Example 22.1: Where do young people live?
The Problem: A sample survey asked a random sample of young adults, "Where do you live now?" How does living arrangement vary by the age of the young person? Even though age is quantitative, the two-way table treats age as a categorical variables by dividing the young people into four age groups.

1. Open the data set ta22-01.por. Notice that all combinations of Live and Age are listed in the first two columns. The count of young people is given in the third column.
2. Click Data then Weight Cases.
3. Click on Weight cases by and move Count into the Frequency Variable box. Click OK.

4. Change counts to percents.
a. Click Analyze, then Descriptive Statistics, then Crosstabs.
b. Move Live into the Row(s) box.
c. Move Age into the Column(s) box.

d. Click the Cells button.
e. Under Percentages put a check next to Column.

f. Click Continue.
g. Click OK. A new window will pop up with your output.

Live * Age Crosstabulation

			Age				
			Age19	Age20	Age21	Age22	Total
Live	Another	Count	37	47	40	38	162
		\% within Age	6.9\%	6.1\%	5.0\%	4.3\%	5.4%
	Group	Count	58	60	49	25	192
		\% within Age	10.7\%	7.8\%	6.1\%	2.9\%	6.4%
	Other	Count	5	2	3	9	19
		\% within Age	.9\%	3\%	4\%	1.0\%	6\%
	OwnPlac	Count	116	279	372	487	1254
		\% within Age	21.5%	36.4\%	46.4\%	55.5\%	42.0\%
	Parents	count	324	378	337	318	1357
		\% within Age	60.0\%	49.3\%	42.1\%	36.3\%	45.5\%
	Total	Count	540	766	801	877	2984
		\% within Age	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

The Chi-Square Test

Example 22.6: Are cell-only telephone users different?

The Problem: Random digit dialing telephone surveys do not call cell phone numbers. If the opinions of people who have only cell phones differ from those of people who still have the landline service, the poll results may not represent the entire adult populations. The Pew Research Center interviewed separate random samples of cell-only and landline telephone users. In SPSS carry out a chi-square test for:

Ho: There is no relationship between type of phone service and political party affiliation.
Ha: There is some relationship type of phone service and political party affiliation.

1. Enter data into SPSS.
a. Go to Variable View.
b. Under Name in row 1, type Party, corresponding to the political party affiliation. Under Type, select String. Under Width, select " 10 ".
c. Under Name in row 2, type Service, corresponding to the type of phone service. Under Type, select String.
d. Under Name in row 3, type Count, corresponding to the number of phone users that correspond to the service type and political party affiliation of that row. Under Type, select Numeric.

e. Go to Data View and enter the data.

g. Click Data then Weight Cases.
h. Click on Weight cases by and move Count into the Frequency Variable box.
i. Click OK.

2. Perform the chi-square test.
a. Click Analyze, scroll down to Descriptive Statistics, then click on Crosstabs.
b. Move Party into the Row(s) box.
c. Move Service into the Column(s) box.

d. Click the Statistics button at the right side of the window.
e. Put a check in the box in front of Chi-square.
f. Click Continue.

g. To include expected cell counts in your Crosstabulation table in your output, click Cells, and under Counts put a check mark next to Expected.

-Noninteger Weights
Round cell counts Round case weightsTruncate cell counts Truncate case weightsNo adjustments

Continue

\square
\square
h. Click Continue. Then click OK.
i. A new window will pop up with your output.

Case Processing Summary

Grade * Activities Crosstabulation

			Activities			Total
			2 to 12 hours	Less than 2 hours	More than 12 hours	
Grade	C or better	Count	68	11	3	82
		Expected Count	62.7	13.8	5.5	82.0
	D or F	Count	23	9	5	37
		Expected Count	28.3	6.2	2.5	37.0
Total		Count	91	20	8	119
		Expected Count	91.0	20.0	8.0	119.0

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	6.926^{a}	2	.031
Likelihood Ratio	6.520	2	.038
N of Valid Cases	119		

a. 1 cells (16.7%) have expected count less than 5 . The minimum expected count is 2.49 .

Chapter 22 Exercises

22.1 Facebook at Penn State.
22.3 Attitudes towards recycled products.
22.5 Facebook at Penn State.
22.13 Saving birds from windows.
22.15 Police harassment?
22.17 What's your sign?
22.29 Free speech for racists?
22.43 How are schools doing?
22.45 Market research.
22.47 Party support in brief.

Chapter 22 SPSS Solutions

22.1 To find the percent of University Park students who fall in each Facebook category, add the values given for University Park $(68+55+215+640=978)$. Then, divide each category's number by the total. We see that about 7% of the University Park students do not use Facebook and
 about 5.6% use it several times per month or less. Continue with the other two categories, to find that about 22% use use Facebook at least once a week and 65.4% use it at least once a day.

To compare the distributions, we'll make a stacked bar chart of the data with one bar for each of the University Park and Commonwealth students. Open data file ex22-01. To create the chart, click Graphs, Legacy Dialogs, Bar. We want the Stacked bar chart where data are Summaries for groups of cases. We'll create an initial chart (and modify it later with the Chart Editor) by defining it as below (don't forget to give your graph a Titles).

It's hard to compare the two distributions in the initial graph, because there were different numbers of students surveyed at the different campuses.

Facebook Use at Penn State Campuses

Click in the graph to bring up the Chart Editor, then click Options, Scale to $\mathbf{1 0 0 \%}$. You can also click in the y-axis label and remove it by unchecking the Display axis title box (with percents showing, this is not needed). If you wish, click the Variables tab and change the Style for Use from Color to pattern. Apply and Close the Chart Editor.

It is clear that University Park students are much more likely to be daily Facebook users; Commonwealth students are more likely to not use it at all; the "occasional" users seem similar.
22.3 Parts (a) and (b) want us to compute tests for a difference in proportions. We first compute the test for those who do not use Facebook. There were 68/978 $=0.0695$ University Park students who do not use it and $248 / 875=0.2834$ Commonwealth students who do not. The pooled proportion is $(68+248) /(978+875)=0.1705$.

With a test statistic of $z=-12.22$, we do not really need to compute the P-value, as this will be (essentially) 0 . There is a difference. University Park students are definitely more likely to use Facebook.

We repeat the computation for those using Facebook at least once a week. The observed proportions are: University Park, 215/978 $=0.2198$ and Commonwealth, 157/875 = 0.1794 . The pooled proportion is $(215+157) /(978+875)=0.2008$.

The difference is not quite as significant, but is still significant at the 0.05 level (P-value 0.030). Again, University Park students are more likely to use Facebook at least once a week.

These two P-values can't tell use about the two distributions for all four outcomes because they don't represent all the categories. Further, they are really dependent - if a student is in one category, they can't be in another, but we don't know which other category.
22.5 If there is no relationship, the expected counts are $(\mathrm{R} \times \mathrm{C}) / \mathrm{T}$, where R is the row total, C is the column total, and T is the grand total. The grand total for the table is $910+$ $627=1537$. There were a total of $55+76=131$ students who use Facebook several times a month or less. The expected count of these for Commonwealth students is 53.44. Similarly, the Commonwealth expected count for at least weekly users is 151.75 and for at least once a day users, the expected count is 421.81 . The expected counts should total 627; we see they do.

The general trend for these older Commonwealth students is that they are more likely to be occasional Facebook users than daily users; other claims on their time is most likely the reason.
22.13 The expected counts are $53 * 1 / 3=17.6667$, since if the tilts made no difference, there should be an equal number of strikes on each type of window. We enter the observed and expected counts in two variables and compute the components of the chisquare statistic as shown below. Sum the components to find $\chi^{2}=16.11$.

22.15 We entered the data as shown at right. Our null hypothesis is that the counts agree with the population proportions; the alternate is that they do not agree. SPSS still doesn't like summarized data. We add the number of observations to find that $401+$

Proportion	Count	Age
0.328	40116 to 29	
0.594	48030 to 59	
0.078	2060 up	

Chis
37.64

5.69
35.97

F Compute Variable

With a test statistic of $\chi^{2}=119.84$ and P-value of 0.000 , we conclude that the actual citations do not match the population distributions. It is clear from the above the the largest contributions come from the youngest and oldest age groups. The younger ones are cited much more than expected, the older ones much less.
22.17 If births are equally spread throughout the year, each sign should have $1 / 12$ of them. We have H_{0} : all signs have probability $1 / 12 . \mathrm{H}_{\mathrm{A}}$ is that H_{0} is false. We will perform a χ^{2} goodness-of-fit test with the given data. (It is reasonable to assume the GSS is a random survey of all US adults.) The data given represent 4344 individuals. Under the null hypothesis, we expect $4344 / 12=362$ individuals in each sign. We omit details (see Exercises 22.113 and 22.15 above), and find $\chi^{2}=19.76$ with P-value 0.049 , barely significant at the 5% level. We reject H_{0} and conclude births are not equally spread through the year. We can see that Aries and Virgo make the largest contributions to the statistic - Aries (a winter month) has a lower than expected count and Virgo (a fall month) has a higher than expected count.
22.29 If we combine the races, we have $140+976+121=1237$ individuals who would let the racist speak and $129+480+131=740$ who would not, making a total sample of size $n=1977$. The observed proportion who would allow a racist to speak is $\hat{p}=1237 / 1977=0.6257$.

Based on this GSS survey, between 59.8% and 65.4% of U.S. adults think a racist should be allowed to speak, with 99% confidence.

There were 269 Blacks, of whom 140/269 $=52.0 \%$ thought racists should be allowed to speak. For Whites, the percent is $976 /(976+480)=67.0 \%$; for Others we have $121 / 252=$ 48.0%. Both the Blacks and Others have percentages much less than Whites, but there were more Whites in the sample. To perform the chi-square test, enter the data as below.

Race	Allow	Count
black	yes	140
black	no	129
white	yes	976
white	no	480
other	yes	121
other	no	131

Click Data, Weight Cases. Click to weight cases by Count, then OK.

Now, click Analyze, Descriptive Statistics, Crosstabs. Click to enter Allow as the row and Race as the column. Now, click the Statistics button and check the box to ask for the Chi-square. Continue and click the Cells button. Click to ask for the observed and expected counts. Continue and $\mathbf{O K}$ computes the test.

We have the table below with both observed and expected counts.
Allow * Race Crosstabulation

			Race			
			black	other	white	Total
Allow	no	Count	129	131	480	740
		Expected Count	100.7	94.3	545.0	740.0
	yes	Count	140	121	976	1237
	Expected Count	168.3	157.7	911.0	1237.0	
	Total	Count	269	252	1456	1977
		Expected Count	269.0	252.0	1456.0	1977.0

Chi-Square Tests

	Value	df	Asymp. Sig. (2- sided)
Pearson Chi-Square	$47.899^{\text {a }}$		2
Likelihood Ratio	46.952		2

a. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 94.32 .

The P-value of the test is 0.000 . We have overwhelming evidence that more whites would allow a racist to speak than Blacks or people of other ethnicities. Note that the largest contributions to the test statistic are from the Other column.
22.43 We're using the data layout from file ex22-43. This file has race in a column, school opinion in one, and the counts in a third. We again use the variable Count to weight cases, then use Analyze, Descriptive Statistics, Crosstabs as described in Exercise 22.29.
Chi-Square Tests

	Value	df	Asymp. Sig. (2- sided)
Pearson Chi-Square	$22.426^{\text {a }}$		8
.004			
Likelihood Ratio	22.897	8	.003
N of Valid Cases	605		

a. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 21.26 .

Schools * Race Crosstabulation						
			Race			
		black	white	hispanic	Total	
Schools	don't	Count	22	14	28	64
		Expected Count	21.4	21.3	21.4	64.0
	excel	Count	12	22	34	68
	Expected Count	22.7	22.6	22.7	68.0	
	fair	Count	75	60	61	196
	Expected Count	65.4	65.1	65.4	196.0	
	good	Count	69	81	55	205
	Expected Count	68.4	68.1	68.4	205.0	
	poor	Count	24	24	24	72
	Expected Count	24.0	23.9	24.0	72.0	
	Total	Count	202	201	202	605
	Expected Count	202.0	201.0	202.0	605.0	

The differences in the distributions are statistically significant ($P=0.004$). To see the departures from the null hypothesis, examine the expected counts. Blacks are less likely to call schools Excellent than expected (12 observed versus 22.7 expected) while Hispanics are more likely to call them Excellent (34 observed and 22.7 expected) and less likely to call them Good (55 versus 68). Blacks are more likely to call them Good (75 versus 65.4). There seems to be no real differences among the ethnicities on calling the schools Poor.
22.45 We've used the data in ex22-45. As in the last two exercises, we use Data, Weight Cases to weight the results by Count. We then use Analyze, Descriptive Statistics, Crosstabs to recreate the table and add the expected counts (click Cells, Expected).

Newpref * Group Crosstabulation							
			Group				
			hardhot	hardwarm	softhot	softwarm	Total
Newpref	no	Count	30	42	27	53	152
		Expected Count	30.9	47.2	24.0	49.8	152.0
	yes	Count	42	68	29	63	202
		Expected Count	41.1	62.8	32.0	66.2	202.0
	Total	Count	72	110	56	116	354
		Expected Count	72.0	110.0	56.0	116.0	354.0

Chi-Square Tests

	Value	df	Asymp. Sig. (2- sided)
Pearson Chi-Square	2.058^{a}		3
Likelihood Ratio	2.062		3

a. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 24.05 .

There is no significant difference between the person's laundry practice and their preference for the new product $(P=0.560)$, although it appears that the people with soft water seem to prefer the standard product (their expected counts are somewhat smaller than the observed) and the people with hard water seem to prefer the new product (their expected counts are also a bit smaller than observed).

22.47 The new table will be as shown below.

	None	High School	Jr. college	Bachelor	Graduate
Democrat leaning	279	996	156	313	218
Republican leaning	135	731	129	336	128

To see if support differs by level of education, we enter the data as shown below. As in the last exercises, we weight cases by Count and use Analyze, Descriptive Statistics, Crosstabs to compute the test. Do not forget to ask for the Chi-squared $\underline{\text { Statistic }}$ and the Cell Expected values.

Leaning	Education	Count
Democrat	None	279
Democrat	HS	996
Democrat	JC	156
Democrat	Bachelor	313
Democrat	Graduate	218
Republican	None	135
Republican	HS	731
Republican	JC	129
Republican	Bachelor	336
Republican	Graduate	128

Leaning * Education Crosstabulation

			Education					
			Bachelor	Graduate	HS	JC	None	Total
Leaning	Democrat	Count	313	218	996	156	279	1962
	Expected Count	372.2	198.4	990.5	163.5	237.4	1962.0	
	Republican	Count	336	128	731	129	135	1459
	Expected Count	276.8	147.6	736.5	121.5	176.6	1459.0	
	Total	Count	649	346	1727	285	414	3421
	Expected Count	649.0	346.0	1727.0	285.0	414.0	3421.0	

Chi-Square Tests

	Value	df	Asymp. Sig. (2- sided)
Pearson Chi-Square	$44.539^{\text {a }}$		4
44.806		4	.000
Likelihood Ratio	3421		
N of Valid Cases			

a. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 121.55 .

With a $0.000 P$-value, we conclude there is a difference in political leaning with education level. People with no high school education are more likely to lean Democrat as are people with either a Bachelor's or graduate degree; in other words, the Democrats seem to draw support from either people with little or a lot of education.

