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CHAPTER 17

C H A P T E R   O U T L I N E

17.1  The Logistic 
Regression Model

17.2  Inference for Logistic 
Regression

17.3  Multiple Logistic 
Regression

Logistic Regression 

Introduction
The linear regression methods we studied in Chapters 10 and 11 are used 
to model the relationship between a quantitative response variable and one 
or more explanatory variables. In this chapter, we describe similar methods 
for use when the response variable has only two possible outcomes. For 
example, 

HauteLook.com is an online destination offering limited-time flash sale 
events. A response variable of interest to their sales division is whether a 
member buys or does not buy the daily flash sale item. 

For JP Morgan Chase & Co. recruiting leadership, a response variable of 
interest is whether a candidate accepts or declines a job offer. 

In general, we call the two outcomes of the response variable “success” and 
“failure” and represent them by 1 (for a success) and 0 (for a failure). The 
mean is then the proportion of 1s, p 5 Ps  success d.

If our data are n independent observations with the same p, this is the 
binomial setting. What is new in this chapter is that the data now include at 
least one explanatory variable x and the probability p of a success depends 
on the value of x. The explanatory variables can either be categorical or 
quantitative. For example, the probability a customer purchases the flash 
sale item could depend on the age and gender of the customer, as well as 
the type of clothing item on sale and the percent discount. The probability 
a candidate accepts a job offer from JP Morgan Chase & Co. could depend 
on the salary amount, the level of guaranteed bonuses, and whether or not 
the offer includes a non-compete clause.

Because it is now a probability that depends on explanatory variables, 
inference methods are needed to ensure that the probability 0 # p # 1. 
Logistic regression is a statistical method for describing these kinds of 
relationships.1 

reminder 
binomial setting, p. 245
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17-2	 CHAPTER 17  Logistic Regression 

17.1 The Logistic Regression Model
In general, the data for simple logistic regression are n independent cases, each con-
sisting of a value of the explanatory variable x and either a success or a failure for 
that trial. For example, x may be the salary amount, and “success” means that this 
applicant accepted the job offer. Every observation may have a different value of x.

To introduce logistic regression, however, it is convenient to start with the spe-
cial case in which the explanatory variable x is also a yes-or-no variable. The data 
then contain a number of outcomes (success or failure) for each of the two values of 
x. There are also just two values of p, one for each value of x. Assuming the count of 
successes for each value of x has a binomial distribution, we are on familiar ground 
as described in Chapters 5 and 8. Here is an example.

Clothing Color and Tipping  What are the factors that affect a customer’s  
tipping behavior? Studies have shown that a server’s gender and various aspects 
of a server’s appearance have an effect on tipping, unrelated to the quality of 
service. Some of these same studies have shown that the effect is different for 
male and female customers.

Because the color red has been shown to increase the physical attractive-
ness of women, a group of researchers decided to see if the color of clothing 
a female server wears has an effect on the tipping behavior.2 Although they 
considered both male and female customers, we focus on the 418 male custom-
ers in the study.

The response variable is whether or not the male customer left a tip. The 
explanatory variable is whether the female server wore a red top or not. Let’s 
express this condition numerically using an indicator variable, 

x 5 51  if the server wore a red top 

0  if the server wore a different colored top  

The female servers in the study wore a red top for 69 of the customers and wore 
a different colored top for the other 349.

The probability that a randomly chosen customer will tip has two values, 
p1 for those whose server wore a red top and p0 for those whose server wore 
a different colored top. The number of customers who tipped a server wearing 
red top has the binomial distribution Bs69, p1d. The number of customers who 
tipped a server wearing a different color top has the Bs349, p0d distribution. 

Binomial distributions and odds
We begin with a review of some ideas associated with binomial distributions.

EXAMPLE 17.1  Proportion of Tippers 

CASE 17.1 In Chapter 8, we used sample proportions to estimate population propor-
tions. For this study, 40 of the 69 male customers tipped a server who was wearing 
red and 130 of the 349 customers tipped a server who was wearing a different color. 
Our estimates of the two population proportions are 

 red:   p⁄1 5
40

69
5 0.5797

C
A

SE 17.1

RED

DATA

RED

DATA
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and 

 not red:   p⁄0 5
130

349
5 0.3725

That is, we estimate that 58.0% of the male customers will tip if the server wears 
red, and 37.3% of the male customers will tip if the server wears a different color. 

Logistic regression works with odds rather than proportions. The odds are the 
ratio of the proportions for the two possible outcomes. If p is the probability of a 
success, then 1 2 p is the probability of a failure, and 

 odds 5
p

1 2 p
5

 probability of success  

 probability of failure  

A similar formula for the sample odds is obtained by substituting p⁄ for p in this 
expression.

 EXAMPLE 17.2  Odds of Tipping 

CASE 17.1 The proportion of tippers among male customers who have a server 
wearing red is p⁄1 5 0.5797, so the proportion of male customers who are not tippers 
when their server wears red is 

1 2 p⁄1 5 1 2 0.5797 5 0.4203

The estimated odds of a male customer tipping when the server wears red are, 
therefore, 

  odds 5
p⁄1

1 2 p⁄1

 5
0.5797

1 2 0.5797
5 1.3793

For the case when the server does not wear red, the odds are 

  odds 5
p⁄0

1 2 p⁄0

 5
0.3725

1 2 0.3725
5 0.5936

When people speak about odds, they often round to integers or fractions. 
Because 1.3793 is approximately 7/5, we could say that the odds that a male cus-
tomer tips when the server wears red are 7 to 5. In a similar way, we could describe 
the odds that a male customer does not tip when the server wears red as 5 to 7.

Apply your Knowledge

17.1  Energy drink commercials.  A study was designed to compare Red Bull 
energy drink commercials. Each participant was shown the commercials, A and 
B, in random order and asked to select the better one. There were 140 women and 
130 men who participated in the study. Commercial A was selected by 65 women 
and by 67 men. Find the odds of selecting Commercial A for the men. Do the same 
for the women.

reminder
odds, p. 582
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17.2  Use of audio/visual sharing through social media.  In Case 8.3 (page 438), 
we studied data on large and small food and beverage companies and the use of 
audio/visual sharing through social media. Here are the data:

Observed numbers of companies 

Size 

Use A/V sharing

TotalYes No

Small 150 28 178

Large 27 25 52

Total 177 53 230

What proportion of the small companies use audio/visual sharing? What propor-
tion of the large companies use audio/visual sharing? Convert each of these pro-
portions to odds.

Model for logistic regression
In Chapter 8, we learned how to compare the proportions of two groups (such as 
large and small companies) using z tests and confidence intervals. Simple logistic 
regression is another way to make this comparison, but it extends to more general 
settings with a success-or-failure response variable.

In simple linear regression we modeled the mean � of the response variable 
y as a linear function of the explanatory variable: � 5 �0 1 �1x. When y is just 1 
or 0 (success or failure), the mean is the probability p of a success. Simple logistic 
regression models the mean p in terms of an explanatory variable x. We might try to 
relate p and x as in simple linear regression: p 5 �0 1 �1x. Unfortunately, this is not 
a good model. Whenever �1 Þ 0, extreme values of x will give values of �0 1 �1x 
that fall outside the range of possible values of p, 0 # p # 1.

The logistic regression model removes this difficulty by working with the natu-
ral logarithm of the odds. We use the term log odds or logit for this transformation 
of p. We model the log odds as a linear function of the explanatory variable: 

 log1 p

1 2 p2 5 �0 1 �1x

As p moves from 0 to 1, the log odds move through all negative and positive numeri-
cal values. Here is a summary of the logistic regression model.

Simple Logistic Regression Model 
The statistical model for simple logistic regression is 

 log1 p

1 2 p2 5 �0 1 �1x

where p is a binomial proportion and x is the explanatory variable. The param-
eters of the logistic model are �0 and �1. 

Figure 17.1 graphs the relationship between p and x for some different values 
of �0 and �1. The logistic regression model uses natural logarithms. There are tables 
of natural logarithms and most calculators have a built-in function for the natural 
logarithm, often labeled “ln.”

log odds or logit

Moore_4e_CH17_Printer.indd   4 10/9/15   11:46 AM
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Returning to the tipping study, for servers wearing red we have 

 logs  odds d 5 logs1.3793d 5 0.3216

and for servers not wearing red we have 

 logs  odds d 5 logs0.5936d 5 20.5215

Verify these results with your calculator, remembering that “log” in these equa-
tions is the natural logarithm.

Apply your Knowledge

17.3  Log odds choosing Commercial A.  Refer to Exercise 17.1. Find the log 
odds for the men and the log odds for the women choosing Commercial A.

17.4  Log odds for use of audio/visual sharing.  Refer to Exercise 17.2. Find 
the log odds for the small and large companies.

Fitting and interpreting the logistic regression model
We must now fit the logistic regression model to data. In general, the data con-
sist of n observations on the explanatory variable x, each with a success-or-failure 
response. Our tipping example has an indicator (0 or 1) explanatory variable. Logis-
tic regression with an indicator explanatory variable is a special case but is important 
in practice. We use this special case to understand a little more about the model.

EXAMPLE 17.3  Logistic Model for Tipping Behavior 

CASE 17.1 In the tipping example, there are n 5 418 observations. The explanatory 
variable is whether the server wore a red top or not, which we coded using an indica-
tor variable with values x 5 1 for servers wearing red and x 5 0 for servers wearing 
a different color. There are 69 observations with x 5 1 and 349 observations with 
x 5 0. The response variable is also an indicator variable: y 5 1 if the customer left 
a tip and y 5 0 if not. The model says that the probability p of leaving a tip depends 
on the color of the server’s top (x 5 1 or x 5 0). There are two possible values for 
p—say, p1 for servers wearing red and p0 for servers wearing a different color. 
The model says that for servers wearing red 

 log1 p1

1 2 p1
2 5 �0 1 �1

0 1 2 3 4 5 6 7 8 9
x

10

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

p

a0 = -4.0
a1 = 0.8

a0 = -8.0
a1 = 1.6

a0 = -4.0
a1 = 2.0

Figure 17.1  Plot of p versus x 
for selected values of �0 and �1.
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and for servers wearing a different color 

 log1 p0

1 2 p0
2 5 �0

Note that there is a �1 term in the equation for servers wearing red because x 5 1, 
but it is missing in the equation for servers wearing a different color because 
x 5 0. 

In general, the calculations needed to find the estimates b0 and b1 for the param-
eters �0 and �1 are complex and require the use of software. When the explanatory 
variable has only two possible values, however, we can easily find the estimates. 
This simple framework also provides a setting where we can learn what the logistic 
regression parameters mean.

EXAMPLE 17.4  Parameter Estimates for Tipping Behavior 

CASE 17.1 For the tipping example, we found the log odds for servers wearing red, 

 log1 p⁄1

1 2 p⁄1
2 5 0.3216

and for servers wearing a different color, 

 log1 p⁄0

1 2 p⁄0
2 5 20.5215

To find estimates b0 and b1 of the model parameters �0 and �1, we match 
the two model equations in Example 17.3 with the corresponding data equations. 
Because 

 log1 p0

1 2 p0
2 5 �0 and log1 p⁄0

1 2 p⁄0
2 5 20.5215

the estimate b0 of the intercept is simply the logs  odds d for servers wearing a  
different color, 

b0 5 20.5215

Similarly, the estimated slope is the difference between the logs  odds d for serv-
ers wearing red and the logs  odds d for servers wearing a different color, 

b1 5 0.3216 2 s20.5215d 5 0.8431

The fitted logistic regression model is 

 logs  odds d 5 20.5215 1 0.8431x

The slope in this logistic regression model is the difference between the 
 logs  odds d for servers wearing red and the logs  odds d for servers wearing a different 
color. Most people are not comfortable thinking in the logs  odds d scale, so interpreta-
tion of the results in terms of the regression slope is difficult.

EXAMPLE 17.5  Transforming Estimates to the Odds Scale 

CASE 17.1 To get to the odds scale, we take the exponential of the logs  odds d. Based 
on the parameter estimates in Example 17.4, 

 odds 5 e20.521510.8431x 5 e20.5215 3 e0.8431x
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From this, the ratio of the odds for a server wearing red (x 5 1) and for a server 
wearing a different color (x 5 0) is 

 oddsred 

 oddsother 

5 e0.8431 5 2.324

The transformation e0.8431 undoes the natural logarithm and transforms the 
logistic regression slope into an odds ratio, in this case, the comparison of odds that 
a male customer tips when a server is wearing red to the odds that a male customer 
tips when a server is wearing a different color. In other words, we can multiply the 
odds of tipping when a server wears a different color by the odds ratio to obtain the 
odds of tipping for a server wearing red: 

 oddsred 

5 2.324 3  oddsother 

In this case, the odds of tipping when a server wears red are about 2.3 times the odds 
when a server wears a different color.

Notice that we have chosen the coding for the indicator variable so that the 
regression slope is positive. This will give an odds ratio that is greater than 1.  
Had we coded servers wearing a different color as 1 and servers wearing red 
as 0, the sign of the slope would be reversed, and the fitted equation would be 
logs  odds d 5 0.3216 2 0.8431x, and the odds ratio would be e20.8431 5 0.430. The 
odds of tipping for servers wearing a different color are roughly 43% of the odds 
for servers wearing red.

Of course, it is often the case that the explanatory variable is quantitative rather 
than an indicator variable. We must then use software to fit the logistic regression 
model. Here is an example.

EXAMPLE 17.6  Will a Movie Be Profitable? 

The MOVIES data set (described on page 550) includes both the movie’s budget 
and the total U.S. revenue. For this example, we classify each movie as “profitable”  
(y 5 1) if U.S. revenue is larger than the budget and nonprofitable (y 5 0) other-
wise. This is our response variable.

odds ratio

MOVPROF
DATA
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Figure 17.2  Scatterplot of the 
movie profit data with a scat-
terplot smoother, Example 17.6.  
The smoother suggests the 
upper half of an S-shape similar 
to those shown in Figure 17.1.   
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The data set contains several explanatory variables, but we focus here on the natu-
ral logarithm of the opening-weekend revenue, LOpening. Figure 17.2 is a scatterplot 
of the data with a scatterplot smoother (page 68). The probability that a movie is profit-
able increases with the log opening weekend revenue. Because an S-shaped curve like 
those in Figure 17.1 is suggested by the smoother, we fit the logistic regression model 

 log1 p

1 2 p2 5 �0 1 �1x

where p is the probability that the movie is profitable and x is the log opening-
weekend revenue. The model for estimated log odds fitted by software is 

 logs  odds d 5 b0 1 b1x 5 21.41 1 0.781x

The estimated odds ratio is eb1 5 2.184. This means that if opening-weekend 
revenue x were roughly e1 5 2.72 times larger (for example, $18.1 million to 
$49.2 million), the odds that the movie will be profitable increase by 2.2 times. 

Apply your Knowledge

17.5  Fitted model for energy drink commercials.   Refer to Exercises 17.1 and 
17.3. Find the estimates b0 and b1 and give the fitted logistic model. What is the 
estimated odds ratio for a male to choose Commercial A (x 5 1) versus a female 
to choose Commercial A (x 5 0)?

17.6  Fitted model for use of audio/video sharing.   Refer to Exercises 17.2 and 
17.4. Find the estimates b0 and b1 and give the fitted logistic model. What is the 
estimated odds ratio for small (x 5 1) versus large (x 5 0) companies?

17.7  Interpreting an odds ratio.  If we apply the exponential function to the 
fitted model in Example 17.6, we get 

 odds 5 e21.4110.781x 5 e21.41 3 e0.781x

Show that for any value of the quantitative explanatory variable x, the odds ratio 
for increasing x by 1, 

 oddsx11

 oddsx

is e0.781 5 2.184. This justifies the interpretation given at the end of Example 17.6.

The odds ratio interpretation of the estimated slope parameter is a very attrac-
tive feature of the logistic regression model. The health sciences, for example, have 
used this model extensively to identify risk factors for disease and illness. There are 
other statistical models, such as probit regression, that describe binary responses, 
but none of them has this interpretation. 

SECTION 17.1  Summary

•	 Logistic regression explains a success-or-failure response variable in terms of at 
least one explanatory variable. 

•	 If p is a proportion of successes, then the odds of a success are pys1 2 pd, the 
ratio of the proportion of successes to the proportion of failures. 

probit regression
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•	 The simple logistic regression model relates the proportion of successes in the 
population to one explanatory variable x through the logarithm of the odds (or 
logit) of a success: 

 log1 p

1 2 p2 5 �0 1 �1x

That is, each value of x gives a different proportion p of successes. The data are 
n values of x, with observed success or failure for each. The model assumes that 
these n success-or-failure trials are independent, with probabilities of success 
given by the logistic regression equation. The parameters of the model for one 
explanatory variable are �0 and �1. 

•	 Software fits the data to the model, producing estimates b0 and b1 of the param-
eters �0 and �1. 

•	 The odds ratio is the ratio of the odds of a success at x 1 1 to the odds of a success 
at x. It is found as e�1, where �1 is the slope in the logistic regression equation. 

17.2 Inference for Logistic Regression
Statistical inference for logistic regression with one explanatory variable is similar 
to statistical inference for simple linear regression. We calculate estimates of the 
model parameters and standard errors for these estimates. Confidence intervals are 
formed in the usual way, but we use standard Normal z*-values rather than critical 
values from the t distributions. The ratio of the estimate to the standard error is the 
basis for hypothesis tests. 

The statistic z is sometimes called the Wald statistic. Output from some sta-
tistical software reports the significance test result in terms of the square of the  
z statistic. 

X2 5 z2

This statistic is called a chi-square statistic. When the null hypothesis is true, it has a 
distribution that is approximately a �2 distribution with one degree of freedom, and 
the P-value is calculated as Ps�2 $ X2d. Because the square of a standard Normal 
random variable has a �2 distribution with one degree of freedom, the z statistic and 
the chi-square statistic give the same results for statistical inference.

Confidence Intervals and Significance Tests for Logistic Regression 
An approximate level c confidence interval for the slope �1 in the logistic 
regression model is 

b1 6 z*
 SE b1

The ratio of the odds for a value of the explanatory variable equal to x 1 1 to 
the odds for a value of the explanatory variable equal to x is the odds ratio e�1.  
A level c confidence interval for the odds ratio is obtained by transforming 
the confidence interval for the slope, 

seb12z*
 SE b1, eb11z*

 SE b1d

In these expressions z* is the standard Normal critical value with area C 
between 2z* and z*. 

Wald statistic

reminder
chi-square statistic, 

p. 463 
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17-10	 CHAPTER 17  Logistic Regression 

To test the hypothesis H0: �1 5 0, compute the test statistic 

X2 5 1 b1

 SE b1
2

2

In terms of a random variable �2 having the �2 distribution with one degree 
of freedom, the P-value for a test of H0 against Ha: �1 Þ 0 is approximately 
Ps�2 $ X2d.

We have expressed the null hypothesis in terms of the slope �1 because this form 
closely resembles what we studied in simple linear regression. In many applications, 
however, the results are expressed in terms of the odds ratio. A slope of 0 is the same 
as an odds ratio of 1, so we often express the null hypothesis of interest as “the odds 
ratio is 1.” This means that the two odds are equal and the explanatory variable is 
not useful for predicting the odds.

EXAMPLE 17.7  Computer Output for Tipping Study 

CASE 17.1 Figure 17.3 gives the output from Minitab and SAS for the tipping study. 
The parameter estimates match those we calculated in Example 17.4. The standard 
errors are 0.1107 and 0.2678. A 95% confidence interval for the slope is 

 b1 6 z*
 SE b1

5 0.8431 6 s1.96ds0.2678d
 5 0.8431 6 0.5249

We are 95% confident that the slope is between 0.3182 and 1.368. Both Minitab 
and SAS output provide the odds ratio estimate and 95% confidence interval. If this 
interval is not provided, it is easy to compute from the interval for the slope �1: 

 seb12z*
 SE b1, eb11z* SE b1d 5 se0.3182, e1.368d

 5 s1.375, 3.927d

RED

DATA

Minitab

Figure 17.3  Logistic regression  
output from Minitab and  
SAS for the tipping data,  
Example 17.7. 
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We conclude, “Servers wearing red are more likely to be tipped than servers 
wearing a different color (odds ratio = 2.324, 95% CI = 1.375 to 3.928).” 

It is standard to use 95% confidence intervals, and software often reports these 
intervals. A 95% confidence interval for the odds ratio also provides a test of the 
null hypothesis that the odds ratio is 1 at the 5% significance level. If the confidence 
interval does not include 1, we reject H0 and conclude that the odds for the two 
groups are different; if the interval does include 1, the data do not provide enough 
evidence to distinguish the groups in this way.

Apply your Knowledge

CASE 17.1 17.8  Read the output.  Examine the Minitab and SAS output in  
Figure 17.3. Create a table that reports the estimates of �0 and �1 with the standard 
errors. Also report the odds ratio with its 95% confidence interval as given in this 
output.

17.9  Inference for energy drink commercials.  Use software to run a logistic 
regression analysis for the energy drink commercial data of Exercise 17.1. Sum-
marize the results of the inference.

17.10  Inference for audio/visual sharing.  Use software to run the logistic 
regression analysis for the audio/visual sharing data of Exercise 17.2. Summarize 
the results of the inference.

Examples of logistic regression analyses
The following example is typical of many applications of logistic regression. It 
concerns a designed experiment with five different values for the explanatory 
variable.

EXAMPLE 17.8  Effectiveness of an Insecticide 

As part of a cost-effectiveness study, a wholesale florist company ran an experiment 
to examine how well the insecticide rotenone kills an aphid called Macrosiphoniella 
sanborni that feeds on the chrysanthemum plant.3 The explanatory variable is the 
concentration (in log of milligrams per liter) of the insecticide. About 50 aphids 

ENERGY

DATA

AVSHARE

DATA

INSECT

DATA

SAS

Figure 17.3  (Continued)
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17-12	 CHAPTER 17  Logistic Regression 

each were exposed to one of five concentrations. Each insect was either killed or not 
killed. Here are the data, along with the results of some calculations: 

Concentration 
x (log scale) 

Number 
of insects

Number 
killed

Proportion 
killed p⁄ Log odds 

0.96 50   6 0.1200 21.9924 

1.33 48 16 0.3333 20.6931 

1.63 46 24 0.5217 0.0870

2.04 49 42 0.8571 1.7918

2.32 50 44 0.8800 1.9924

Because there are replications at each concentration, we can calculate the pro-
portion killed and estimate the log odds of death at each concentration. The logistic 
model in this case assumes that the log odds are linearly related to log concentration. 
Least-squares regression of log odds on log concentration gives the fit illustrated in 
Figure 17.4. There is a clear linear relationship, which justifies our use of the logistic 
model. The logistic regression fit for the proportion killed appears in Figure 17.5. 
It is a transformed version of Figure 17.4 with the fit calculated using the logistic 
model rather than least squares. 
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When the explanatory variable has several values, we can often use graphs 
like those in Figures 17.4 and 17.5 to visually assess whether the logistic regres-
sion model seems appropriate. Just as a scatterplot of y versus x in simple linear 

Figure 17.5  Plot of the percent 
killed versus log concentration 
with the logistic fit for the 
insecticide data, Example 17.8.

Figure 17.4  Plot of log odds 
of percent killed versus log 
concentration for the insecti-
cide data, Example 17.8.
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regression should show a linear pattern, a plot of log odds versus x in logistic regres-
sion should be close to linear. Just as in simple linear regression, outliers in the x 
direction should be avoided because they may overly influence the fitted model.

The graphs strongly suggest that insecticide concentration affects the kill 
rate in a way that fits the logistic regression model. Is the effect statistically 
significant? Suppose that rotenone has no ability to kill Macrosiphoniella san-
borni. What is the chance that we would observe experimental results at least as 
convincing as what we observed if this supposition were true? The answer is the  
P-value for the test of the null hypothesis that the logistic regression slope is zero. 
If this P-value is not small, our graph may be misleading. As usual, we must add 
inference to our data analysis.

EXAMPLE 17.9  Does Concentration Affect the Kill Rate? 

Figure 17.6 gives the output from JMP and Minitab for logistic regression analysis 
of the insecticide data. The model is 

 log1 p

1 2 p2 5 �0 1 �1x
INSECT1

DATA

JMP

Minitab

Figure 17.6  Logistic regres-
sion output from JMP and 
Minitab for the insecticide 
data, Example 17.9.
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where the values of the explanatory variable x are 0.96, 1.33, 1.63, 2.04, 2.32. From 
the JMP output, we see that the fitted model is 

 logs  odds d 5 b0 1 b1x 5 24.8923 1 3.1088x

or 
p⁄

1 2 p⁄
5 e24.892313.1088x

Figure 17.5 is a graph of the fitted p⁄ given by this equation against x, along with the 
data used to fit the model. JMP gives the statistic X2 under the heading “ChiSquare.” 
The null hypothesis that �1 5 0 is clearly rejected (X2 5 64.23, P , 0.0001).

The estimated odds ratio is 22.394. An increase of one unit in the log concentra-
tion of insecticide (x) is associated with a 22-fold increase in the odds that an insect 
will be killed. The confidence interval for the odds is given in the Minitab output:
s10.470, 47.896d.

Remember that the test of the null hypothesis that the slope is 0 is the same as 
the test of the null hypothesis that the odds ratio is 1. If we were reporting the results 
in terms of the odds, we could say, “The odds of killing an insect increase by a factor 
of 22.3 for each unit increase in the log concentration of insecticide (X2 5 64.23, 
P , 0.0001; 95% CI = 10.5 to 47.9).” 

Apply your Knowledge

17.11  Find the 95% confidence interval for the slope.  Using the information 
in the output of Figure 17.6, find a 95% confidence interval for �1.

17.12  Find the 95% confidence interval for the odds ratio.  Using the estimate 
b1 and its standard error in the output of Figure 17.6, find the 95% confidence inter-
val for the odds ratio and verify that this agrees with the interval given by Minitab.

17.13  X2 or z.  The Minitab output in Figure 17.6 does not give the value of X2. 
The column labeled “Z-Value” provides similar information. 

(a) Find the value under the heading “Z-Value” for the predictor LCONC. 
Verify that this value is simply the estimated coefficient divided by its standard 
error. This is a z statistic that has approximately the standard Normal distribu-
tion if the null hypothesis (slope 0) is true. 
(b) Show that the square of z is X2. The two-sided P-value for z is the same as 
P for X2.

In Example 17.6, we studied the problem of predicting whether a movie will be 
profitable using the log opening-weekend revenue as the explanatory variable. We 
now revisit this example to include the results of inference.

EXAMPLE 17.10  Predicting a Movie’s Profitability 

Figure 17.7 gives the output from Minitab for a logistic regression analysis using log 
opening-weekend revenue as the explanatory variable. The fitted model is 

 logs  odds d 5 b0 1 b1x 5 21.41 1 0.781x

This agrees up to rounding with the result reported in Example 17.6.  
From the output, we see that because P 5 0.148, we cannot reject the null 

hypothesis that the slope �1 5 0. The value of the test statistic is z 5 1.45, calcu-
lated from the estimate b1 5 0.781 and its standard error  SE b1

5 0.540. Minitab 

MOVPROF

DATA
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reports the odds ratio as 2.184, with a 95% confidence interval of s0.7584, 6.2898d.  
Notice that this confidence interval contains the value 1, which is another way to 
assess H0: �1 5 0. In this case, we don’t have enough evidence to conclude that this 
explanatory variable, by itself, is helpful in predicting the probability that a movie 
will be profitable. 

We estimate that a one-unit increase in the log opening-weekend revenue will 
increase the odds that the movie is profitable about 2.2 times. The data, however, 
do not give us a very accurate estimate. We do not have strong enough evidence to 
conclude that movies with higher opening-weekend revenues are more likely to be 
profitable. Establishing the true relationship accurately would require more data.

SECTION 17.2  Summary

•	 Software fits the data to the model, producing estimates b0 and b1 of the param-
eters �0 and �1. Software also produces standard errors for these estimates. 

•	 A level C confidence interval for the slope �1 is 

b1 6 z*
 SE b1

A level C confidence interval for the odds ratio e�1 is obtained by transforming 
the confidence interval for the slope, 

seb12z*
 SE b1, eb11z*

 SE b1d

In these expressions, z* is the standard Normal critical value with area C between 
2z* and z*. 

•	 The null hypothesis that x does not help predict p in the logistic regression model 
is H0: �1 5 0 or H0: e

�1 5 1 in terms of the odds ratio. To test this hypothesis, 
compute the test statistic 

X2 5 1 b1

 SE b1
2

2

Minitab

Figure 17.7  Logistic regres-
sion output from Minitab for 
the movie profit data with log 
opening-weekend revenue 
as the explanatory variable, 
Example 17.10.
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In terms of a random variable �2 having a �2 distribution with 1 degree of freedom,  
the P-value for a test of H0 against Ha: �1 Þ 0 is approximately Ps�2 $ X2d. 

17.3 Multiple Logistic Regression
The MOVIES data set includes several explanatory variables. Example 17.10 exam-
ines the model where log opening-weekend revenue alone is used to predict the odds 
that the movie will have a total U.S. box-office revenue greater than the movie budget. 
Perhaps combining log opening-weekend revenue with other explanatory variables 
will give us a helpful prediction. We use multiple logistic regression to investigate 
this. Generating the computer output is easy, just as it was when we generalized 
simple linear regression with one explanatory variable to multiple linear regression 
with more than one explanatory variable in Chapter 11. The statistical concepts are 
similar, although the computations are more complex. Here is the analysis.

EXAMPLE 17.11  Multiple Logistic Regression 

As in Example 17.10, we predict the odds that a movie will be profitable. The 
explanatory variables are log opening-weekend revenue (LOpening), the length of 
the movie (Minutes), and the movie rating (Rating1). For the movie rating, we use 
an indicator variable 

 Rating1 5 51  if the rating is PG{13 or R 

0  if the rating is G or PG 

Figure 17.8 gives the SAS output. From the output, we see that the fitted  
model is 

  logs  odds d 5 b0 1 b1  LOpening 1 b2  Minutes  1 b3  Rating1 

 5 1.8532 1 1.6019  LOpening 2 0.0607  Minutes  1 1.2225  Rating1 

multiple logistic 
regression

MOVPROF

DATA

SAS

Figure 17.8  Multiple logistic 
regression output from SAS 
for the movie profit data with 
log opening-weekend reve-
nue, number of theaters, and 
movie rating as the explana-
tory variables, Example 17.11.
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When analyzing data using multiple regression, we first examine the hypothesis 
that all the regression coefficients for the explanatory variables are zero. We do the 
same for logistic regression. The hypothesis 

H0: �1 5 �2 5 �3 5 0

is tested by a chi-square statistic with three degrees of freedom. SAS provides results 
for three different calculations of this statistic. In all three approaches, the P-value 
is , 0.05. We reject H0 and conclude that one or more of the explanatory variables 
can be used to predict the odds that the movie is profitable.

Next, examine the coefficients for each variable and the tests that each of these 
is 0 in a model that contains the other two. The P-values are 0.0225, 0.0089, and 
0.2138. The null hypothesis H0: �3 5 0 cannot be rejected. That is, log opening-
weekend revenue and the movie’s length add significant predictive ability once the 
other two explanatory variables are already in the model. 

Because the explanatory variables are correlated, however, we cannot con-
clude that log opening-weekend revenue and the movie’s length make up the 
best predictive model. Further analysis of these data using subsets of the three 
explanatory variables is needed to clarify the situation. We leave this work for the 
exercises.

SECTION 17.3  Summary

•	 In multiple logistic regression the response variable has two possible values, as 
in logistic regression, but there can be several explanatory variables. 

•	 As in multiple regression, there is an overall test for all the explanatory variables. 
The null hypothesis that the coefficients for all the explanatory variables are zero 
is tested by a statistic that has a distribution that is approximately �2 with degrees 
of freedom equal to the number of explanatory variables. The P-value is approxi-
mately Ps�2 $ X2d. 

•	 Hypotheses about individual coefficients, H0: �j 5 0 or H0: e
�j 5 1 in terms of 

the odds ratio, are tested by a statistic that is approximately �2 with 1 degree of 
freedom. The P-value is approximately Ps�2 $ X2d. As in multiple regression, 
these tests assess the contribution of each explanatory variable given the other 
explanatory variables are already in the model. 

For Exercises 17.1 and 17.2, see pages 17-3 to 17-4; 
for 17.3 and 17.4, see page 17-5; for 17.5 to 17.7, see 
page 17-8; for 17.8 to 17.10, see page 17-11; and for 
17.11 to 17.13, see page 17-14. 

17.14  What’s wrong?  For each of the following, 
explain what is wrong and why.
(a) For a multiple logistic regression with four 
explanatory variables, the null hypothesis that the 
regression coefficients of all the explanatory variables 
are zero is tested with an F test.

(b) For a logistic regression we assume that the error 
term in our model has a Normal distribution. 
(c) In logistic regression with two explanatory variables 
we use a chi-square statistic to test the null hypothesis 
H0: b1 5 0 versus a two-sided alternative.

17.15  What’s wrong?  For each of the following, 
explain what is wrong and why.
(a) If b1 5 2 in a logistic regression analysis, we estimate 
that the probability of an event is multiplied by 2 when 
the value of the explanatory variable changes by 1. 

CHAPTER 17  Review Exercises
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(b) The intercept �0 is equal to the odds of an event when 
x 5 0.
(c) The odds of an event are 1 minus the probability of 
the event.

17.16  Is a movie profitable?  In Example 17.6  
(pages 17-7 to 17-8), we developed a model to predict 
whether a movie will be profitable based on log opening-
weekend revenue. What are the predicted odds of a 
movie being profitable if the opening-weekend revenue is
(a) $20 million dollars?
(b) $35 million dollars?
(c) $50 million dollars?

17.17  Converting odds to probability.  Refer to the 
previous exercise. For each opening-weekend revenue, 
compute the estimated probability that the movie is 
profitable.

17.18  Finding the best model?  In Example 17.11  
(pages 17-16 to 17-17), we looked at a multiple logistic 
regression for movie profitability based on three explan-
atory variables. Complete the analysis by looking at the 
three models with two explanatory variable models and 
the three models with single variables. Create a table 
that includes the parameter estimates and their P-values 
as well as the X2 statistic and degrees of freedom. Based 
on the results, which model do you think is the best? 
Explain your answer.    MOVPROF

17.19  Tipping behavior in Canada.  The Consumer 
Report on Eating Share Trends (CREST) contains data 
that cover all provinces of Canada and that describe 
away-from-home food purchases by roughly 4000 
households per quarter. Researchers recently restricted 
their attention to restaurants at which tips would  
normally be given.4 From a total of 73,822  
observations, “high” and “low” tipping variables were 
created based on whether the observed tip rate was 
above 20% or below 10%, respectively. They then used 
logistic regression to identify explanatory variables 
associated with either “high” or “low” tips. Here is a 
table summarizing what they termed the stereotype-
related variables for the high-tip analysis: 

Explanatory variable Odds ratio 

Senior adult 0.7420*

Sunday 0.9970 

English as second language 0.7360*

French-speaking Canadian 0.7840*

Alcoholic drinks 1.1250*

Lone male 1.0220 

The starred odds ratios were significant at the 0.01 
level. Write a short summary explaining these results 
in terms of the odds of leaving a high tip.

17.20  Sexual imagery in magazine ads.  In what 
ways do advertisers in magazines use sexual  
imagery to appeal to youth? One study classified 
each of 1509 full-page or larger ads as “not sexual” 
or “sexual,” according to the amount and style of the 
dress of the male or female model in the ad. The ads 
were also classified according to the target  
readership of the magazine.5 A logistic regression 
was used to describe the probability that the clothing 
in the ad was “not sexual” as a function of several 
explanatory variables. Here are some of the reported 
results: 

Explanatory variable b z 

Reader age 0.50 13.64

Model sex 1.31 72.15

Men’s magazines 20.05 0.06

Women’s magazines 0.45 6.44

Constant 22.32 135.92

Reader age is coded as 0 for young adult and 1 for 
mature adult. Therefore, the coefficient of 0.50 for 
this explanatory variable suggests that the probabil-
ity that the model clothing is not sexual is higher 
when the target reader age is mature adult. In other 
words, the model clothing is more likely to be 
sexual when the target reader age is young adult. 
Model sex is coded as 0 for female and 1 for male. 
The explanatory variable men’s magazines is 1 if 
the intended readership is men and 0 for women’s 
magazines and magazines intended for both men 
and women (general interest). The variable women’s 
magazines is coded similarly. 
(a) State the null and alternative hypotheses for each of 
the explanatory variables. 
(b) Perform the significance tests associated with the z 
statistics. 
(c) Interpret the sign of each of the statistically 
significant coefficients in terms of the probability that the 
model clothing is sexual. 
(d) Write an equation for the fitted logistic regression 
model.

17.21  Interpret the results.  Refer to the previous 
exercise. The researchers also reported odds ratios with 
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95% confidence intervals for this logistic regression 
model. Here is a summary: 

Explanatory 
variable Odds ratio 

95% confidence limits 

Lower Upper 

Reader age 1.65 1.27 2.16 

Model sex 3.70 2.74 5.01 

Men’s magazines 0.96 0.67 1.37 

Women’s magazines 1.57 1.11 2.23 

(a) Explain the relationship between the confidence 
intervals reported here and the results of the z 
significance tests that you found in the previous exercise. 
(b) Interpret the results in terms of the odds ratios. 
(c) Write a short summary explaining the results. 
Include comments regarding the usefulness of the fitted 
coefficients versus the odds ratios in making a summary.

17.22  CEO overconfidence/dominance and corpo-
rate acquisitions.  The acquisition literature suggests 
that takeovers occur either due to conflicts between 
managers and shareholders or to create a new entity 
that exceeds the sum of its previously separate  
components. Other research has offered managerial 
hubris as a third option, but it has not been studied 
empirically. Recently, some researchers revisited 
acquisitions over a 10-year period in the Australian 
financial system.6 A measure of CEO overconfidence 
was based on the CEO’s level of media exposure, and a 
measure of dominance was based on the CEO’s  
remuneration relative to the firm’s total assets. They 
then used logistic regression to see whether CEO 
overconfidence and dominance were positively related 
to the probability of at least one acquisition in a year. 
To help isolate the effects of CEO hubris, the model 
included explanatory variables of firm characteristics 
and other potentially important factors in the decision 
to acquire. The following table summarizes the results 
for the two key explanatory variables: 

Explanatory variable b SE(b)

Overconfidence 0.0878 0.0402

Dominance 1.5067 0.0057

(a) State the null and alternative hypotheses for each of 
the explanatory variables.
(b) Perform the significance tests and determine whether 
the variables are significant at the 0.05 level.
(c) Estimate the odds ratio for each variable and 
construct a 95% confidence interval.
(d) Write a short summary explaining the results.

17.23  E-government use in Canada.  Electronic 
government (e-government) provides digital means, 
such as an email address or a website, for citizens to 
contact public officials. The vision behind e-government  
is to create a more citizen-focused government. One 
study used survey data to determine what factors are 
related to a citizen using an e-government website 
rather than visiting or calling a government office.7 
The dependent variable refers to whether the citizen 
used the website or not. Explanatory variables include 
sex (1 = female, 0 = male), daily Internet use  
(1 = yes, 0 = no), age (six ordered categories  
numbered 1 through 6), household income (seven 
ordered categories numbered 1 through 7), size of  
the community (six ordered categories numbered  
1 through 6), and education (1 = at least some  
postsecondary education, 0 = other). The following 
table summarizes the results. 

Explanatory variable Odds ratio

Sex 0.87

Daily Internet use 4.16

Age 0.81

Income 1.01

Size 0.85

Education 0.97

Intercept 0.66

All but “Education” and “Income” were significant at 
the 0.05 level. 
(a) Interpret each of the odds ratios in terms of the 
probability that the individual uses the website.
(b) Compute the regression coefficients for each of the 
variables in the table. 
(c) What are the odds that a male college graduate, who 
uses the Internet daily, is age category 3, household income 
level 4, and community size 5 is using the Internet?

17.24  Business Travel.  The Best Western Small 
Business Travel survey reported that 355 of 400 U.S. 
small business owners plan as many business trips this 
fall as last year.8 
(a) What proportion of U.S. small business owners plan 
as many trips as last year?
(b) What are the odds that an owner will say that his or 
her company plans as many business trips as last year?
(c) What proportion of owners said that they do not plan 
as many trips this year? 
(d) What are the odds that an owner will say that they are 
cutting back on business trips this year?
(e) How are your answers to parts (b) and (d) related?
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17.25  Stock options.  Different kinds of companies 
compensate their key employees in different ways. 
Established companies may pay higher salaries, while 
new companies may offer stock options that will be 
valuable if the company succeeds. Do high-tech  
companies tend to offer stock options more often than 
other companies? One study looked at a random  
sample of 200 companies. Of these, 91 were listed in 
the Directory of Public High Technology Corporations,  
and 109 were not listed. Treat these two groups as 
SRSs of high-tech and non-high-tech companies. 
Seventy-three of the high-tech companies and 75 of 
the non-high-tech companies offered incentive stock 
options to key employees.9 
(a) What proportion of the high-tech companies offer 
stock options to their key employees? What are the odds?
(b) What proportion of the non-high-tech companies 
offer stock options to their key employees? What are the 
odds?
(c) Find the odds ratio using the odds for the high-tech 
companies in the numerator. Interpret the result in a few 
sentences.

17.26  Log odds for high-tech and non-high-tech 
firms.  Refer to the previous exercise. 
(a) Find the log odds for the high-tech firms. Do the 
same for the non-high-tech firms. 
(b) Define an explanatory variable x to have the value 1 
for high-tech firms and 0 for non-high-tech firms. For the 
logistic model, we set the log odds equal to �0 1 �1x.  
Find the estimates b0 and b1 for the parameters �0 and �1. 
(c) Show that the odds ratio is equal to eb1.

17.27  Do the inference.  Refer to the previous exercise.  
Software gives 0.3347 for the standard error of b1.
(a) Find the 95% confidence interval for �1.
(b) Transform your interval in (a) to a 95% confidence 
interval for the odds ratio. 
(c) What do you conclude?

17.28  Suppose you had twice as many data.  Refer 
to Exercises 17.25 through 17.27. Repeat the  
calculations assuming that you have twice as many 
observations with the same proportions. In other 
words, assume that there are 182 high-tech firms and 
218 non-high-tech firms. The numbers of firms offering  
stock options are 146 for the high-tech group and 150 
for the non-high-tech group. The standard error of b1 
for this scenario is 0.2366. Summarize your results, 
paying particular attention to what remains the same 
and what is different from what you found in  
Exercises 17.25 through 17.27.

17.29  Poor service.  In the food service industry, 
some argue tipping encourages servers to provide  

discriminate service. If the server expects a good tip, 
he or she may provide better service. In one survey, 
193 servers were surveyed and asked if they ever  
provided poor service because they did not expect a 
good tip. Ninety-six replied yes.10 
(a) What proportion of the servers have provided poor 
service because of an expected bad tip? 
(b) What are the odds that a server will have provided 
bad service given an expected bad tip?
(c) What proportion of the servers did not provide bad 
service?
(d) What are the odds that a server will not have provided 
bad service ?
(e) How are your answers to parts (b) and (d) related?

17.30  Active retail companies versus failed  
companies.  Case 7.2 (page 389) compared the cash 
flow of 74 active retail firms with the cash flow for 27 
firms that failed. Here we analyze the same data with a 
logistic regression. The outcome is whether or not the 
firm is active, and the explanatory variable is the cash 
flow. Here is the output from Minitab: CMPS

Minitab

(a) Give the fitted equation for the log odds that a firm 
will be active. 
(b) Describe the results of the significance test for the 
coefficient of cash flow. 
(c) The odds ratio is the estimated amount that the odds 
of being active would increase when the cash flow is 
increased by one unit. Report this odds ratio with the 
95% confidence interval.
(d) Write a short summary of this analysis and compare 
it with the analysis of these data that we performed in 
Chapter 7. Which approach do you prefer?

17.31  Analysis of a reduction in force.  To meet 
competition or cope with economic slowdowns,  
corporations sometimes undertake a “reduction in force”  
(RIF), in which substantial numbers of employees are 
terminated. Federal and various state laws require that 
employees be treated equally regardless of their age. In 
particular, employees over the age of 40 years are in a 
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“protected” class, and many allegations of discrimination  
focus on comparing employees over 40 with their 
younger coworkers. Here are the data for a recent RIF: 

Over 40

Terminated No Yes

Yes   17   71

No 564 835

(a) Write the logistic regression model for this problem 
using the log odds of a termination as the response 
variable and an indicator for over and under 40 years of 
age as the explanatory variable.
(b) Explain the assumption concerning binomial 
distributions in terms of the variables in this exercise. 
To what extent do you think that these assumptions are 
reasonable? 
(c) Software gives the estimated slope b1 5 1.0371 and 
its standard error  SE b1

5 0.2755. Transform the results 
to the odds scale. Summarize the results and write a 
short conclusion. 
(d) If additional explanatory variables were available, for 
example, a performance evaluation, how would you use 
this information to study the RIF?

17.32  Following brands through social media.   
PricewaterhouseCoopers (PwC) surveyed 1000 online 
shoppers in the United States and China.11 One question 
asked if the online shopper followed brands they  
purchased through social media. Here are the results: 

Country

Social media

No Yes

United States 487 513

China   72 928

(a) What are the proportions of online shoppers who 
follow brands through social media in each country?
(b) What is the odds ratio for comparing U.S. online 
shoppers with Chinese online shoppers?
(c) Write the logistic regression model for this problem 
using the log odds of following brands through social 
media as the response variable and country as an 
indicator explanatory variable (U.S. = 1).
(d) Software gives the estimated slope b1 5 22.5043  
and its standard error  SE b1

5 0.1377. Transform this 
result to the odds scale and compare it with your answer 
in part (b).
(e) Construct a 95% confidence interval for the odds 
ratio and write a short conclusion.

17.33  Know your customers.  To devise effective 
marketing strategies, it is helpful to know the  
characteristics of your customers. A study compared 
demographic characteristics of people who use the 
Internet for travel arrangements and of people who do 
not.12 Of 1132 Internet users, 643 had completed  
college. Among the 852 nonusers, 349 had completed 
college. Model the log odds of using the Internet to 
make travel arrangements with an indicator variable 
for having completed college as the explanatory  
variable. Summarize your findings.

17.34  Does income relate to use of the Internet?   
The study mentioned in the previous exercise also 
asked about income. Among Internet users, 493 
reported income of less than $50,000, and 378 
reported income of $50,000 or more. (Not everyone 
answered the income question.) The corresponding 
numbers for nonusers were 477 and 200. Repeat the 
analysis using an indicator variable for income of 
$50,000 or more as the explanatory variable. What do 
you conclude?

For the following five exercises, you will need to  
construct indicator variables to use categorical  
variables as explanatory variables in logistic regression.  
Be sure to review the material in Chapter 11 on models 
with categorical explanatory variables (pages 571–575)  
before attempting these exercises. 

17.35  Reduction in force using logistic regression.   
In Exercise 17.31, hypothetical data are given for a 
reduction in force (RIF). If there is a statistically  
significant difference in the RIF proportions based  
on age group, the employer needs to justify the  
difference based on other (nondiscriminatory)  
variables.    RIF   
(a) Run the logistic analysis to predict the odds of being 
riffed using age group (over 40 years of age or not) as 
the explanatory variable. Summarize your results. 
(b) What other variables would you add to the model 
in an attempt to explain the results that you described 
in part (a)? If these other variables can be shown to 
be characteristics that relate to job performance, and 
the age effect is no longer significant in a model that 
includes these variables, then the analysis provides 
statistical evidence that can be used to refute a claim of 
discrimination.

17.36  Sexual imagery in ads.  Refer to Exercise 17.20  
(page 17-18) concerning the use of sexual imagery in 
magazine ads. Here is the two-way table of counts for 
the 1509 ads. 
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Model dress

Magazine readership

TotalWomen Men General interest

Not sexual 351 514 248 1113

Sexual 225 105   66   396

Total 576 619 314 1509

Use the model dress, expressed as the odds that the 
dress is sexual, as the response variable and the  
magazine readership as the explanatory variable. 
Because there are three magazine readership categories,  
you will need two indicator variables for this multiple 
logistic regression analysis. Use the last category,  
general interest, for the “other” designation when  
creating these indicator variables. IMAGERY

(a) A friend has suggested that the three magazine 
categories be coded as 1, 2, 3 and that this single variable 
be used as the explanatory variable in the logistic 
regression. Explain why this analytical strategy is wrong. 
(b) Summarize the results of the significance testing. 
Do the data support the idea that the sexual content 
expressed in the model dress varies by the magazine 
readership? 
(c) Use the estimates for your model and the coding 
that you used for the explanatory variables to give the 
estimated log odds for each type of magazine readership.

17.37  Rerun the analysis with a different coding.   
In the previous exercise, you used the last category, 
general interest, for the “other” designation when you  
constructed the indicator variables. Now use the women’s  
magazine readership as the “other” category and reana-
lyze the data. Verify that the significance testing results 
for the effect of the two explanatory variables is the 
same as in the previous exercise. IMAGERY

17.38  Student athletes and gambling.  A survey of 
student athletes that asked questions about gambling 
behavior classified students according to the National 

Collegiate Athletic Association (NCAA) division.13 
For male student athletes, the percent who reported 
wagering on collegiate sports are given here along with 
the numbers of respondents in each division: 

 

Division

I II III

Percent 17.2% 21.0% 24.4%

Number 5619 2957 4089

(a) Using the numbers and percents given, calculate the 
numbers of students who gamble and those who do not 
for each NCAA division. 
(b) Use two indicator variables to code the explanatory 
variable, NCAA division. Let the first one be 1 for 
Division II and 0 otherwise; let the second be 1 for 
Division III and 0 otherwise. With this coding, the 
logistic regression model will use the intercept for 
Division I, the intercept plus the coefficient of the first 
indicator variable for Division II, and the intercept 
plus the coefficient of the second indicator variable for 
Division III. 
(c) Run the multiple logistic regression and summarize 
the results.

17.39  Is there a trend?  Refer to the previous exer-
cise. The coding of the indicator variables suggests a 
way to code models when you expect a pattern in the 
response that is based on some kind of ordering of the 
explanatory variable. In some settings this is called 
detecting a dose response. 
(a) Use the model to give the estimated log odds for each 
NCAA division. 
(b) Plot these estimates versus division and summarize 
the results. Does there appear to be a pattern in the 
results? 
(c) How would you model the pattern that you described 
in part (b)?

1.	 Logistic regression models for the general case 
where there are more than two possible values for 
the response variable have been developed. These are 
considerably more complicated and are beyond the 
scope of our present study. For more information on 
logistic regression, see A. Agresti,  An Introduction to 
Categorical Data Analysis, 2nd ed., Wiley, 2007; and 
D. W. Hosmer and S. Lemeshow, Applied Logistic 
Regression, 3rd ed., Wiley, 2013.

2.	 Nicolas Guéguen and Céline Jacob, “Clothing color 
and tipping: Gentlemen patrons give more tips to 
waitresses with red clothes,” Journal of Hospitality 
& Tourism Research 38, no. 2 (2014), pp. 275–280.

3.	 This example is taken from a classical text written 
by a contemporary of R. A. Fisher. (Fisher developed 
many of the fundamental ideas of statistical inference 
that we use today.) The reference is D. J. Finney,  

NOTES AND DATA SOURCES
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  Answers to Odd-Numbered Exercises    17-23

Probit Analysis, Cambridge University Press, 1947. 
Although not included in the analysis, it is important 
to note that the experiment included a control group 
that received no insecticide. No aphids died in this 
group. Also, although we have chosen to call the 
response “killed,” in the text, the category is described 
as “apparently dead, moribund, or so badly affected 
as to be unable to walk more than a few steps.” This 
is an early example of the need to make careful judg-
ments when defining variables to be used in a statisti-
cal analysis. Nevertheless, an insect that is “unable 
to walk more than a few steps” is unlikely to eat very 
much of a chrysanthemum plant!

4.	 Based on Leigh J. Maynard and Malvern Mupan-
dawana, “Tipping behavior in Canadian restaurants,”  
International Journal of Hospitality Management 28 
(2009), pp. 597–603.

5.	 Tom Reichert, “The prevalence of sexual imagery in 
ads targeted to young adults,”  Journal of Consumer 
Affairs 37 (2003), pp. 403–412.

6.	 Results from Rayna Brown and Neal Sarma, “CEO 
overconfidence, CEO dominance and corporate 
acquisitions,”  Journal of Economics and Business 59 
(2007), pp. 358–379.

7.	 Anthony A. Noce and Larry McKeown, “A new 
benchmark for Internet use: A logistic modeling of 
factors influencing Internet use in Canada, 2005,”  

Government Information Quarterly 25 (2008),  
pp. 462–476.

8.	 The press release for this survey can be found at 
the Best Western website, www.bestwestern.com 
/about-us/press-media/press-release-details 
.asp?NewsID=910.

9.	 Based on Greg Clinch, “Employee compensation and 
firms’ research and development activity,” Journal of 
Accounting Research 29 (1991), pp. 59–78.

10.	 Michael Lynn and Shou Wang, “The indirect effects 
of tipping policies on patronage intentions through 
perceived expensiveness, fairness, and quality,”  Jour-
nal of Economic Psychology 39 (2013), pp. 62–71.

11.	 This result can be found at www.pwc.com/gx/en 
/retail-consumer/retail-consumer-publications 
/global-multi-channel-consumer-survey/explore 
-the-data.jhtml.

12.	 From Karin Weber and Weley S. Roehl, “Profiling 
people searching for and purchasing travel products 
on the World Wide Web,”  Journal of Travel Research 
37 (1999), pp. 291–298.

13.	 Based on information in “NCAA 2003 national study 
of collegiate sports wagering and associated health 
risks,” which can be found at the NCAA website, 
www.ncaa.org.

ANSWERS TO ODD-NUMBERED EXERCISES

17.1	 For men: the percent who chose Commercial A is 
0.5154; the percent who chose Commercial B is 
0.4846. The odds are 1.0636. For women: the per-
cent who chose Commercial A is 0.4643; the percent 
who chose Commercial B is 0.5357. The odds are 
0.8667.

17.3	 For men: 0.06166. For women: −0.14306.

17.5	 b0 = −0.14306, b1 = 0.20472. log(odds) = 
−0.14306 + 0.20472x. The odds ratio is 1.227.

17.7	  
oddsx11

oddsx
5

e21.4110.781sx11d

e21.4110.781x

	  5
e0.781xe0.781

e0.781x 5 e0.781 5 2.184.

17.9	 log(odds) = –0.14306 + 0.20472x. The odds ratio 
estimate is 1.227; the 95% confidence interval is 
(0.761, 1.979).

17.11	 (2.349, 3.869).

17.13	 (a) Z = 8.01. (b) 64.16, which agrees with the out-
put up to rounding error.

17.15	 (a) It is not multiplied by 2. When the explana-
tory variable changes by 1, the odds are increased 
by a factor of e2 or 7.389 times. (b) It is missing 
the log; the intercept is equal to the log odds of 
an event when x = 0. (c) The odds of an event are 
the probability of the event divided by 1 minus the 
probability of the event.

17.17	 (a) 0.7170. (b) 0.7968. (c) 0.8383.

17.19	 Those who order alcoholic drinks are 12.5% more 
likely (or 1.125 times as likely) to leave a high tip 
than those who don’t order alcohol. Senior adults 
are about 25.8% less likely (or 0.742 times as 
likely) to leave a high tip than those who aren’t 
senior. Those who speak English as a second 
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language are about 26.4% less likely (or 0.736 
times as likely) to leave a high tip than their coun-
terparts. Those who are French-speaking Canadi-
ans are about 21.6% less likely (or 0.784 times as 
likely) to leave a high tip than those who aren’t 
French-speaking Canadians. 

17.21	 (a) If the confidence interval for the odds ratio 
includes the value 1, the variable is not significant 
in a logistic regression. (b) Because the Reader age, 
Model sex, and Women’s magazines intervals all 
do not contain 1, they are all significant. The Men’s 
magazine interval contains 1 and is not significant. 
(c) Interpreting only significant effects: When the 
reader age is mature adults, the model clothing is 
1.27 to 2.16 times more likely to be not sexual. 
When the model sex is male, the model clothing 
is 2.74 to 5.01 times more likely to be not sexual. 
When the intended readership is women, the model 
clothing is 1.11 to 2.23 times more likely to be not 
sexual. The odds ratios are often much easier to 
interpret than the fitted coefficients.

17.23	 (a) Females are 0.87 times as likely (13% less 
likely) to use the website as males. Daily Internet 
users are 4.16 times as likely to use the website 
as their counterparts. Older-aged people are less 
likely to use the website than younger-aged people. 
Those from larger communities are less likely to 
use the website than those from smaller communi-
ties. Those with different incomes and/or educa-
tions are about equally likely to use the website 
because they aren’t significantly different from 
1. (b) Sex: −0.1393, Daily Internet use: 1.4255,  
Age: −0.2107, Income: 0.01, Size: −0.1625,  
Education: −0.0305, Intercept: −0.4155. (c) 0.6537.

17.25	 (a) 0.8022. odds = 4.0556. (b) 0.6881. odds = 
2.2059. (c) odds ratio = 1.8385. The high-tech 
companies are 1.8385 times more likely to offer 
incentive stock options to key employees than the 
non-high-tech companies.

17.27	 (a) (−0.047, 1.265). (b) (0.954, 3.543). (c) 
Because the interval in part (b) includes 1, there 

is no significant difference in the proportions of 
high-tech and non-high-tech companies that offer 
stock options to key employees.

17.29	 (a) 0.4974. (b) odds = 0.9897. (c) 0.5026. (d) odds =  
1.0104. (e) They are reciprocals.

17.31	 (a) log(odds) = −3.5017 + 1.0369x. (b) The bino-
mial distribution assumes that each employee’s 
termination is independent from one another’s and 
the probability of being terminated is the same 
for each employee. Certainly the latter is not true 
because an individual’s performance is likely dif-
ferent and largely determines whether or not they 
are terminated. (c) odds = 2.82, with 95% the 
confidence interval is (1.644, 4.840). Because the 
interval does not contain 1, the results are signifi-
cant at the 5% level. Employees over 40 are 2.82 
times more likely to be terminated than those under 
40. (d) We could use the additional variables in 
the logistic regression model to account for their 
effects before assessing if age has an effect.

17.33	 log(odds) = −0.0282 + 0.6393x. X2 = 48.34, 
P-value < 0.0001. The odds ratio estimate is 
1.8952; that is, those who have completed college 
are 1.8952 times more likely to use the Internet 
for travel arrangements than those who have not 
completed college.

17.35	 (a) log(odds) = −3.5017 + 1.0369x. X2 = 14.17, 
P-value = 0.0002. The model is significant. For 
a person over 40: 0.085. For a person under 40: 
0.030. (b) Answers will vary.

17.37	 The estimated model becomes log(odds) = 
−0.4447 − 1.1436xmen − 0.8791xgeneral. Now both 
men (X2 = 69.7000, P-value < 0.0001) and gen-
eral (X2 = 29.1872, P-value < 0.0001) terms are 
significant.

17.39	 (a) For Division I: −1.5720. For Division II: 
−1.3248. For Division III: −1.1304. (b) The plot 
shows that log(odds) of gambling increases as 
Division increases. (c) Because the relationship is 
quite linear, we could use a regression analysis. 
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