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Some taking a linear algebra course have little experience with formulating proofs. Since
courses taught using Linear Algebra with Applications incorporate varying degrees of em-
phasis on proofs, this document is an attempt to fill the experience gap. I have not tried
to give a complete treatment of proof-writing — there are a number of good books and
numerous internet resources available if you want something more extensive. But I hope
that this provides enough of an introduction to be useful.

Most of the focus here is on writing proofs, which is more challenging than reading
proofs. But careful reading of proofs is also important and informative. Some text exercises
call for a proof that is a modest modification of a proof already in the book, so there can
be a direct benefit to studying text proofs. Beyond that, working to understand each step
in the text proofs can serve as a guide for other proofs that you are asked to write, and
will give you a better general sense of how proofs are constructed. As you read through the
text, take the time to study the proofs — it will be worth your time!

Terminology

Below are a few mathematical terms that come up throughout the book (and other math
books) that we will use regularly. These provide the organizational structure of the book.

Definition

In mathematics, definitions serve the same purpose they do in everyday language, to provide
the specific meaning of words and phrases. The organization of linear algebra starts with
definitions, with everything building from there. Here are several examples of definitions1.

Definition 1 The integers are the set of all positive and negative “counting numbers”
together with 0,

. . . ,−3,−2,−1, 0, 1, 2, 3, . . .

Note: In what follows, each of k, m, n, and p will denote integers.

Definition 2 An integer n is even if it can be expressed in the form n = 2k, where k is
an integer.

Note that an alternative definition of an even integer is that it ends in one of 0, 2, 4, 6,
or 8. This may be more familiar, but turns out to be harder to work with so is less useful.

Definition 3 An integer n is odd if it can be expressed in the form n = 2k + 1, where k is
an integer.

Definition 4 An integer n is prime if its only positive integer divisors are 1 and n.

Definition 5 A 2× 2 matrix A is diagonal if A =

[
a1 0
0 a2

]
for real a1, a2.

1Many of the examples contained here are drawn from topics other than linear algebra, to make the
discussion more self-contained.
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Conjectures

A conjecture is a mathematical statement that has not yet been shown to be true or false.
In this text there are “true or false” problems that ask for the reader to determine if each is
true or false, and to provide justification for the response. The statements in each of these
problems can be viewed as a conjecture. Below are three examples of conjectures.

Conjecture 1 If m is even and n is odd, then m + n is odd.

Conjecture 2 If k ≥ 0, then n = 22
k

+ 1 is prime.

Conjecture 3 If A and B are 2× 2 diagonal matrices, then the sum A+B is also a 2× 2
diagonal matrix.

Mathematical theory is built up from statements that start as conjectures. To show
that a statement is true, one must provide a rigorous mathematical proof that it is true for
every possibility allowed by the statement. Thus, with respect to Conjecture 1, it is fine to
note that

4 + 7 = 11, 14 + 9 = 23, and 24 + 13 = 37

all agree with the statement. However, this does not prove the statement. There are
infinitely many possible combinations of an even integer m and an odd integer n, so we
cannot individually check each of them. We need an general argument that applies to all
possible combinations. More on this later.

Theorems

When a conjecture has been mathematically proved, it is promoted to the status of theorem.
Theorems serve to state and organize mathematical results, including those in this book.
Most theorems in this book have essentially one of two forms:

If-then Most of our theorems will have this form, which involve a hypothesis and a con-
clusion. For example,

Theorem: If p > 2 is a prime number, then p is odd.

Here “p > 2 is a prime number” is the hypothesis and “p is odd” is the conclusion.
When formulating a proof, we assume that the hypothesis is true, and from that
assumption show that the conclusion must also be true.

Note that for this theorem, reversing the hypothesis and conclusion results in a state-
ment that is not true:

False Statement: If p > 2 is odd, then p is prime.

This shows that for some if-then theorems, reversing the order of hypothesis and
conclusion produces a statement that is not true.

If-and-only-if Consider the following:

Theorem: n is odd if and only if n2 is odd.

The “if and only if” signals that this theorem is actually a combination of two “if-then”
statements:
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Statement 1: If n is odd, then n2 is odd.

and the reverse

Statement 2: If n2 is odd, then n is odd.

Both parts of an if-and-only-if theorem can play the role of the hypothesis, with the
other part playing the role of the conclusion. In such cases, we sometimes say that
the two parts are “equivalent” meaning that each follows from the other. To prove an
if-and-only-if theorem, one must show that both “directions” (statements) are true.

Counterexamples

Although examples do not suffice to prove a conjecture is true, a single example is enough
to show that a conjecture is false. Consider Conjecture 2, which states that n = 22

k
+ 1 is

prime for k = 0, 1, 2, . . .. Such numbers n are called Fermat numbers after Pierre de Fermat,
a 17th century attorney and amateur mathematician who conjectured that numbers of this
form are all prime. For the cases 0 ≤ k ≤ 4 he was right, with

k = 0 ⇒ n = 22
0

+ 1 = 3 (prime)

k = 1 ⇒ n = 22
1

+ 1 = 5 (prime)

k = 2 ⇒ n = 22
2

+ 1 = 17 (prime)

k = 3 ⇒ n = 22
3

+ 1 = 257 (prime)

k = 4 ⇒ n = 22
4

+ 1 = 65537 (prime)

However, in 1732 Leonhard Euler showed that

n = 22
5

+ 1 = 4294967297 = (641)(6700417)

so Conjecture 2 does not hold when k = 5.
In general, a counterexample is an example that shows a conjecture is not true. You

only need one counterexample to disprove a conjecture. The above computation shows that
k = 5 is a counterexample to Conjecture 2. (In fact, as of this writing it has been shown
that 5 ≤ k ≤ 32 are all counterexamples to Conjecture 2.)

Types of proofs

Below we outline the three main types that you are most likely to need to use, and give
examples of each. As you read the book, pay attention to which type of proof is being used
with each theorem. Also note that sometimes more than one method of proof is possible.

Throughout this section are “Tip”s that generally apply when writing proofs. Here is
the first, which came up earlier:

Tip 1 An example does not constitute a proof!

That is, showing that a statement is true for a specific case does not show that it holds
in general. Refer back to the discussion about Conjecture 1, and see Conjecture 2 for an
example of the hazards of “proof by example.”
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The proofs in this book are shown in fairly efficient form, not in the way that they were
originally conceived. Just like when writing an essay, writing a proof typically requires a
rough draft. In the example proofs below, there will be included both “scratch work” (a
form of rough draft) and the proof, which is the final version and the part that is actually
turned in as homework or published.

Tip 2 Use scratch work to figure out the required pieces of a proof, then write the final
version of the proof.

Direct proof

A direct proof is the most commonly used, and is typically the clearest, so is generally
preferable when possible. This type of proof starts by assuming the statements in the
hypothesis, and proceeds in a sequence of justified steps directly to the statement in the
conclusion.

Theorem 1 If m is even and n is odd, then m + n is odd.

Scratch work: When developing a proof, we need to know where we are starting, and
where we want to go. It’s almost always helpful to start with the definitions of the terms
used in the hypothesis and conclusion. Referring back to the earlier definitions, we have

Hypothesis: “m is even” =⇒ m = 2k1 for some integer k1
“n is odd” =⇒ n = 2k2 + 1 for some integer k2

Conclusion: “m + n is odd” =⇒ m + n = 2k3 + 1 for some integer k3

Note that we use k1, k2, and k3 to make it clear that these need not be the same integer.
Combining the two parts of the hypothesis, we have

m + n = (2k1) + (2k2 + 1) = 2k1 + 2k2 + 1

To reach the conclusion, we need to show that m + n has the form 2k3 + 1. It’s clear that
a bit of reorganizing will give us that,

m + n = 2k1 + 2k2 + 1 = 2(k1 + k2) + 1

which shows that m + n has the form 2k3 + 1 as required. Note that this argument works
for any even m and odd n — no additional assumptions are made, so all possible cases
covered by the hypothesis are included.

We’re now ready for the proof.

Proof : Suppose that m is even and n is odd. Then m = 2k1 and n = 2k2 + 1 for some
integers k1 and k2. Therefore

m + n = (2k1) + (2k2 + 1) = 2k1 + 2k2 + 1 = 2(k1 + k2) + 1

Thus m + n = 2k3 + 1 for some integer k3, and hence m + n is odd.

Tip 3 Write down the definitions when starting scratch work for a proof.
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Theorem 2 If A and B are 2× 2 diagonal matrices, then so is A + B.

Scratch work: Let’s start again with definitions.

Hypothesis: “A is a 2× 2 diagonal matrix” =⇒ A =

[
a1 0
0 a2

]
for real a1, a2

“B is a 2× 2 diagonal matrix” =⇒ B =

[
b1 0
0 b2

]
for real b1, b2

Conclusion: “A + B is a 2× 2 diagonal matrix” =⇒ A + B =

[
c1 0
0 c2

]
for real c1, c2

Matrix addition works by adding terms in corresponding entries (see Section 3.2), so that
the two parts of the hypothesis gives us

A + B =

[
a1 0
0 a2

]
+

[
b1 0
0 b2

]
=

[
(a1 + b1) 0

0 (a2 + b2)

]
which is the required form. Note that the values of the entries does not matter, so this
explanation holds for all cases covered by the hypothesis.

We’re now ready for the proof.

Proof : Suppose that A =

[
a1 0
0 a2

]
and B =

[
b1 0
0 b2

]
are 2× 2 diagonal matrices. Then

A + B =

[
a1 0
0 a2

]
+

[
b1 0
0 b2

]
=

[
(a1 + b1) 0

0 (a2 + b2)

]
Hence it follows that A + B is also a 2× 2 diagonal matrix.

Indirect proofs

For an if-then statement, when the hypothesis is true, then either (a) the conclusion is
true, or (b) the conclusion is false. Those are the only two possibilities. An indirect proof 2

starts by assuming that the hypothesis is true and the conclusion is false, then combines
the two to arrive at a clear contradiction. This shows that the hypothesis being true cannot
happen simultaneously with the conclusion being false, so when the hypothesis is true the
only possibility remaining is for the conclusion to also be true.

Let’s look at an example by proving a claim made earlier.

Theorem 3 If p > 2 is a prime number, then p is odd.

Scratch work: From the definitions,

Hypothesis: “p > 2 is a prime number” =⇒ the only positive divisors of p are 1 and p

Conclusion: “p is odd” =⇒ p = 2k1 + 1 for some integer k1

It is not easy to see how to get from the divisors of p being only 1 and p to p = 2k1 + 1.
But suppose that we try an indirect proof, which allows us to make the extra assumption
that the conclusion is false:

2Also called a proof by contradiction.
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Extra Assumption: p is not odd =⇒ p is even =⇒ p = 2k2 for some integer k2.

The extra assumption tells us that p = 2k2, and since we know p > 2 it must be that k2 > 1.
Therefore 2 and k2 are both divisors of p, which contradicts p being prime. Thus p > 2
being prime and p being even are incompatible, so it must be that p is odd.

We are ready for the proof.

Proof : Suppose that p > 2 is a prime number, and to the contrary3 that p is even. Then
p = 2k1 for some integer k1. Since p > 2, it must be that k1 > 1 (otherwise p = 2). Hence
2 and k1 are both divisors of p that are not equal to 1 or p. This implies that p is not a
prime, contradicting the hypothesis. Therefore it must be that p is odd.

Tip 4 Be careful not to accidentally assume that the conclusion of a statement is true when
developing a proof.

Theorem 4 An integer n is odd if and only if n2 is odd.

Scratch work: Since this is an if-and-only-if theorem, we need to provide two proofs. One
way to indicate this is with arrows =⇒ and ⇐= indicating the “direction” so that we can
separate the hypothesis from the conclusion.

(=⇒) Let’s start with the definitions. For this direction, we have

Hypothesis: “n is odd” =⇒ n = 2k1 + 1 for some integer k1

Conclusion: “n2 is odd” =⇒ n2 = 2k2 + 1 for some integer k2

Since n = 2k1 + 1, we have n2 = (2k1 + 1)2 = 4k21 + 4k1 + 1 = 2(2k21 + 2k1) + 1. Thus n2

has the form required to be odd, so a direct proof will work for this direction.

(⇐=) For this direction, the role of hypothesis and conclusion reverse, so we have

Hypothesis: “n2 is odd” =⇒ n2 = 2k2 + 1 for some integer k2

Conclusion: “n is odd” =⇒ n = 2k1 + 1 for some integer k1

This time it is harder to proceed from n2 = 2k2 + 1 to saying something about the form of
n, because the square root doesn’t distribute as nicely as the square. Since a direct proof
seems difficult, let’s consider an indirect proof, adding the extra assumption that n is not
odd, hence even.

Extra Assumption: n is even =⇒ n = 2k3 =⇒ n2 = (2k3)
2 = 4k23 = 2(2k23)

But this implies n2 is even, contracting the hypothesis that n2 is odd. Thus we see that an
indirect proof will work.

We have all the required pieces for the proof.

Proof :
(=⇒) Suppose that n is odd4. Then n = 2k1 + 1 for some integer k1. Thus

n2 = (2k1 + 1)2 = 4k21 + 4k1 + 1 = 2(2k21 + 2k1) + 1

3The “to the contrary” signals to the reader that an indirect proof is coming.
4It is a good idea to clearly state the hypothesis for each direction so that the reader knows how the

proof is organized.
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so therefore n2 is odd.

(⇐=) Suppose that n2 is odd, and to the contrary that n is even. Then n = 2k2 for some
integer k2, and thus

n2 = (2k2)
2 = 4k22 = 2(2k22)

This implies n2 is even, a contradiction. Therefore it follows that n is odd.

Induction

Proofs by induction are the most specialized considered here, and are used to prove state-
ments that are indexed by positive integers. Here are two such statements:

Statement 1: If n is odd, then so is nk for all k ≥ 1.

Statement 2:
k∑

m=1

m = 1 + 2 + · · ·+ k =
k(k + 1)

2
for all k ≥ 1.

Suppose that S(k) denotes a mathematical statement indexed by the positive integer k.
To use induction to prove that this statement is true for all such k, we have to verify two
things:

Condition 1. That S(1) is true.

Condition 2. If S(k) is true, then S(k + 1) is also true.

Condition 1 shows that S(k) is true when k = 1, and is usually not hard to verify. By
Condition 2, since S(1) is true, it follows that S(2) is also true. Similarly, again by Condition
2, since S(2) is true, it follows that S(3) is also true. The same argument can be used again
and again to show that S(4), S(5), . . . are also all true.

A proof by induction requires that Condition 1 and Condition 2 be verified for a state-
ment S(k). Let’s start with a silly application of induction. I like pizza, so much so that
the following are true:

Claim 1. If I arrive at a party and pizza is available, I will always have a slice.

Claim 2. No matter how many slices of pizza I eat, I can always eat one more.

Now suppose that S(k) denotes the statement “I can eat k pieces of pizza.” We know that
S(1) is true due to Claim 1. Furthermore, by Claim 2 we know that if I have eaten k slices
of pizza, I can always eat k + 1 slices. Thus by induction, there is no limit to the number
slices of pizza that I can eat. (The only constraint is the amount of pizza available.)

Now let’s return to our previous statements.

Theorem 5 If n is odd, then so is nk for all k ≥ 1.

Scratch work: For this theorem, we set S(k) be the statement “nk is odd.” Then S(1)
corresponds to “n is odd” which is exactly the hypothesis, thus is true.

Next we have to show that if S(k) is true, then S(k + 1) is also true. This is an if-then
statement, with

Hypothesis: “nk is odd” (this is the induction hypothesis)

Conclusion: “nk+1 is odd”
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We know n is odd (by the theorem hypothesis), so n = 2k1+1. By the induction hypothesis,
nk is also odd so nk = 2k2 + 1. Thus

nk+1 = (n)(nk) = (2k1 + 1)(2k2 + 1) = 4k1k2 + 2k1 + 2k2 + 1 = 2(2k1k2 + k1 + k2) + 1

which shows nk+1 is odd. This gives us all the pieces needed for the proof.

Proof : The proof is by induction5. For k = 1, nk = n which is odd by hypothesis, so the
theorem holds for this case.

Now assume that the theorem holds for nk, so that nk is odd. (This is the induction
hypothesis.) Since n is odd, we have n = 2k1 + 1 for some k1. Similarly, since nk is odd, we
have nk = 2k2 + 1 for some k2. Therefore

nk+1 = (n)(nk) = (2k1 + 1)(2k2 + 1) = 4k1k2 + 2k1 + 2k2 + 1 = 2(2k1k2 + k1 + k2) + 1

which shows nk+1 is odd. Thus by induction the theorem holds for all k ≥ 1.

Theorem 6

k∑
m=1

m =
k(k + 1)

2
for all k ≥ 1.

Scratch work: This theorem also sets up well for induction. When k = 1, we have

1∑
m=1

m = 1 and
(1)(1 + 1)

2
= 1

so the theorem holds in this case. For the second part of the induction proof, we start
by assuming that

∑k
m=1m = k(k+1)

2 . The trick is to incorporate this information into the
formula for the sum in the case k + 1, with the key being to note that we have the formula
for the first k terms in the sum. Specifically,

k+1∑
m=1

m =

(
k∑

m=1

m

)
+ (k + 1) =

k(k + 1)

2
+ (k + 1) =

k(k + 1) + 2(k + 1)

2
=

(k + 1)(k + 2)

2

The last term at right is the formula when k is replaced by k + 1, so that is the last piece
needed for the proof. (In fact, we pretty much have the proof. Just a little tidying is
required.)

Proof : The proof is by induction. For k = 1, we have

1∑
m=1

m = 1 and
(1)(1 + 1)

2
= 1

The sum matches the formula for k = 1, so the theorem holds in this case. Next assume
the induction hypothesis, that

∑k
m=1m = k(k+1)

2 . Then

k+1∑
m=1

m =

(
k∑

m=1

m

)
+ (k + 1)

=
k(k + 1)

2
+ (k + 1) =

k(k + 1) + 2(k + 1)

2
=

(k + 1)(k + 2)

2

This confirms the formula for k + 1, and completes the proof.

5This explicit statement makes the method of proof clear.
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