
PROOF OF L’HÔPITAL’S
RULE

I n the text, we proved a special case of L’Hôpital’s Rule (Theorems 1 and 2 in LT Section
7.7 or ET Section 4.7). This supplement presents the complete proof.

THEOREM 1 Theorem L’hôpital’s Rule Assume that f (x) and g(x) are differen-
tiable on an open interval containing a and that

f (a) = g(a) = 0

Also assume that g′(x) �= 0 for x near but not equal to a. Then

lim
x→a

f (x)

g(x)
= lim

x→a

f ′(x)

g′(x)

provided that the limit on the right exists. The conclusion also holds if f (x) and g(x)

are differentiable for x near (but not equal to) a and

lim
x→a

f (x) = ±∞ and lim
x→a

g(x) = ±∞

Furthermore, these limits may be replaced by one-sided limits.

The proof of L’Hôpital’s Rule makes use of the following generalization of the Mean
Value Theorem known as Cauchy’s Mean Value Theorem.

THEOREM 2 Cauchy’s Mean Value Theorem Assume that f (x) and g(x) are con-
tinuous on the closed interval [a, b] and differentiable on (a, b). Assume further that
g′(x) �= 0 on (a, b). Then there exists at least one value c in (a, b) such that

f ′(c)
g′(c)

= f (b) − f (a)

g(b) − g(a)

Proof First note that g(x) satisfies the hypotheses of the standard Mean Value Theorem
on [a, b]. Therefore, there exists r ∈ (a, b) such that

g′(r) = g(b) − g(a)

b − a

By assumption, g′(r) is not equal to zero. It follows that that g(b) − g(a) is non-zero.
Now, just as in the proof of the standard Mean Value Theorem, we build a new function

h(x) to which Rolle’s Theorem applies. Set

h(x) = f (x) − f (b) − f (a)

g(b) − g(a)
g(x)
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We have not divided by zero since g(b) − g(a) �= 0. Furthermore, h(x) is continuous on
[a, b] and differentiable on (a, b) because this is true of both f (x) and g(x). Straightfor-
ward calculation yields

h(a) = h(b) = f (a)g(b) − f (b)g(a)

g(b) − g(a)

Thus, the hypotheses of Rolle’s Theorem are satisfied and the conclusion holds, namely,
there exists c ∈ (a, b) such that h′(c) = 0. In other words,

h′(c) = f ′(c) − f (b) − f (a)

g(b) − g(a)
g′(c) = 0

We may divide by g′(c) (which is nonzero by assumption) and rearrange to obtain the
desired equality:

f ′(c)
g′(c)

= f (b) − f (a)

g(b) − g(a)

We shall carry out the proof of L’Hôpital’s Rule for right-hand limits. The proof
for left-hand limits is similar and the result for two-sided limits follows immediately by
combining the results for left and right-hand limits. We treat the two cases of L’Hôpital’s
Rule separately.

CASE 1 f (a) = g(a) = 0.
Since g′(x) is non-zero near x = a, there is an interval (a, b) such that g′(x) is

positive or negative for x ∈ (a, b), and therefore, g(x) is either strictly increasing or
strictly decreasing on (a, b) (Figure 1). However, g(a) = 0, so g(x) itself is non-zero for
x ∈ (a, b). Thus for all x ∈ (a, b), the hypotheses of Cauchy’s Mean Value Theorem for

a bxc

FIGURE 1 Choose b so that g(x) �= 0 for
x ∈ (a, b). Note that c → a+ as x → a+.

the interval [a, x] are satisfied and hence, there exists c ∈ (a, x) such that

f (x) − f (a)

g(x) − g(a)
= f ′(c)

g′(c)

Since f (a) = g(a) = 0, this reduces to

f (x)

g(x)
= f ′(c)

g′(c)

As x tends to a from the right, the value c also tends to a from the right, and the desired
conclusion follows:

lim
x→a+

f (x)

g(x)
= lim

x→a+
f ′(c)
g′(c)

= lim
c→a+

f ′(c)
g′(c)

= L

CASE 2 Infinite Limits.
Now suppose that f (x) and g(x) are differentiable for x near (but not equal to) a and

satisfy

lim
x→a+ f (x) = ±∞ and lim

x→a+ g(x) = ±∞

We assume that

lim
x→a+

f ′(x)

g′(x)
= L
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By the formal definition of right-hand limits, for every ε > 0, there exists δ > 0 such that

L − ε <
f ′(x)

g′(x)
< L + ε for all a < x < a + δ 1

a b = a +δx c

FIGURE 2 We choose b so that (1) holds
for all x ∈ (a, b)

Set b = a + δ. Making δ smaller if necessary, we may assume that f (x) and g(x)

are differentiable on (a, b), continuous on [a, b] and g(x) �= 0 for x ∈ (a, b). For every
x ∈ (a, b), the hypotheses of Cauchy’s Mean Value Theorem are satisfied on (x, b), so
there exists c in (x, b) such that (Figure 2)

f ′(c)
g′(c)

= f (b) − f (x)

g(b) − g(x)
=

f (x)
g(x)

− f (b)
g(x)

1 − g(b)
g(x)

Multiplying by the denominator on the right, we rewrite this as follows

f ′(c)
g′(c)

(
1 − g(b)

g(x)

)
= f (x)

g(x)
− f (b)

g(x)

or

f ′(c)
g′(c)

= f (x)

g(x)
−

(f (b)

g(x)
− f ′(c)g(b)

g′(c)g(x)

)
︸ ︷︷ ︸

call this r(x)

Denote the indicated quantity on the right-hand by r(x). In other words,

f ′(c)
g′(c)

= f (x)

g(x)
− r(x) 2

Now apply (1) with x = c:

L − ε <
f ′(c)
g′(c)

< L + ε 3

Together with Eq. (2), we obtain

L − ε + r(x) <
f (x)

g(x)
< L + ε + r(x) for all x ∈ (a, b) 4

Keep in mind that b depends on the choice of ε. However, for fixed b, we claim that
r(x) tends to zero as x → a+. Indeed, the first term f (b)/g(x) tends to zero because
g(x) → ∞. Similarly, the second term f ′(c)g(b)/g′(c)g(x) tends to zero because g(x) →
∞ and f ′(c)/g′(c) remains bounded by (3). Having thus shown that r(x) tends to zero,
we may choose δ1 > 0 such that |r(x)| < ε for all x ∈ (a, a + δ1). We may then apply
(4) to conclude that

L − 2ε <
f (x)

g(x)
< L + 2ε for all x ∈ (a, a + δ1) 5

Since ε is arbitrary, this suffices to prove that

lim
x→a+

f (x)

g(x)
= L

as desired.
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CASE 3 Limits as x → ∞.
We shall prove L’Hôpital’s Rule for limits as x → ∞. The case x → −∞ is similar.

Thus we assume there exists a number b such that g′(x) �= 0 for all x > b and that the
following limit exists:

L = lim
x→∞

f ′(x)

g′(x)

We use the variable t = x−1 to convert limits as x → ∞ to one-sided limits as x → 0+.
Thus we have

lim
t→∞

f ′(x)

g′(x)
= lim

t→0+
f ′(t−1)

g′(t−1)
= L

By the Chain Rule,

[f (t−1)]′
[g(t−1)]′ = −t−2f ′(t−1)

−t−2g′(t−1)
= f ′(t−1)

g′(t−1)

Therefore

lim
t→0+

[f (t−1)]′
[g(t−1)]′ = lim

t→0+
f ′(t−1)

g′(t−1)
= L

Now we may apply L’Hôpital’s for one-sided limits as t → 0+ to reach the desired
conclusion:

lim
x→∞

f (x)

g(x)
= lim

t→0+
f (t−1)

g(t−1)
= lim

t→0+
[f (t−1)]′
[g(t−1)]′ = L

Remark: In the statement and proof of L’Hôpital’s Rule, we have assumed that the limit

L = lim
x→a

f ′(x)

g′(x)

is a finite limit. This assumption is not necessary: L’Hôpital’s Rule remains valid if this
limit is infinite (i.e., L = ±∞). The above proofs may be easily modified to handle this
case. For example, suppose that L = ∞. In Case 1 (g(a) = f (a) = 0), we showed (in
the notation of the proof) that

f (x)

g(x)
= f ′(c)

g′(c)

Since c → a+ as x → a+, the ratio on the right tends to ∞ as x → a+ and the conclusion
follows. Similarly, the proof in Case 2 is valid, but the role of ε > 0 is replaced by an
arbitrarily large number M > 0. Instead of (1), we have, for all M , the existence of δ > 0
such that

f ′(x)

g′(x)
> M for all a < x < a + δ.

Instead of (4), we conclude that

f (x)

g(x)
> M + r(x) for all x ∈ (a, b)
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where b = a + δ. Since r(x) → 0 as x → a+, there exists δ1 > 0 such that |r(x)| < 1
2M

for x ∈ (a, a + δ1) and therefore

f (x)

g(x)
>

1

2
M for all x ∈ (a, a + δ1)

This proves that
f (x)

g(x)
tends to ∞ as claimed.


