PROOF OF L’HOPITAL’S
RULE

n the text, we proved a special case of L’Hopital’s Rule (Theorems 1 and 2 in LT Section
7.7 or ET Section 4.7). This supplement presents the complete proof.

THEOREM 1 Theorem Lhdpital’s Rule Assume that f(x) and g(x) are differen-
tiable on an open interval containing a and that

fa) =g =0
Also assume that g’(x) # 0 for x near but not equal to a. Then
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provided that the limit on the right exists. The conclusion also holds if f(x) and g(x)
are differentiable for x near (but not equal to) @ and

lim f(x) =400  and  lim g(x) = 00
x—a x—a

Furthermore, these limits may be replaced by one-sided limits.

The proof of L’Hopital’s Rule makes use of the following generalization of the Mean
Value Theorem known as Cauchy’s Mean Value Theorem.

THEOREM 2 Cauchy’s Mean Value Theorem Assume that f(x) and g(x) are con-
tinuous on the closed interval [a, b] and differentiable on (a, b). Assume further that
g (x) # 0on (a, b). Then there exists at least one value c in (a, b) such that

f'(©) _f®) —f@
g'c) glb)—gla)

Proof First note that g(x) satisfies the hypotheses of the standard Mean Value Theorem
on [a, b]. Therefore, there exists r € (a, b) such that

b) —
g/(r)z g(; g(a)
—d

By assumption, g’(r) is not equal to zero. It follows that that g(b) — g(a) is non-zero.
Now, just as in the proof of the standard Mean Value Theorem, we build a new function
h(x) to which Rolle’s Theorem applies. Set

fb) - fla)
h = [ . A
(x) = f(x) <) — 2@ g(x)



2 PROOF OF L’HOPITAL'S RULE

a ¢ X b
FIGURE 1 Choose b so that g(x) # O for
x € (a, b). Note that c — a+ as x — a+.

We have not divided by zero since g(b) — g(a) # 0. Furthermore, /(x) is continuous on
[a, b] and differentiable on (a, b) because this is true of both f(x) and g(x). Straightfor-
ward calculation yields

fla)gb) — f(b)g(a)
g(b) —g(a)

Thus, the hypotheses of Rolle’s Theorem are satisfied and the conclusion holds, namely,
there exists ¢ € (a, b) such that h’'(c) = 0. In other words,

) = f@
LT ey =0
s —g@

We may divide by g’(c) (which is nonzero by assumption) and rearrange to obtain the
desired equality:

h(a) = h(b) =

h'(e) = f'(c) =

f(©) _f® - f@
g'c) gb)—gla

We shall carry out the proof of L’Hopital’s Rule for right-hand limits. The proof
for left-hand limits is similar and the result for two-sided limits follows immediately by
combining the results for left and right-hand limits. We treat the two cases of L’Hopital’s
Rule separately.

B CASE1 f(a)=g(a)=0.

Since g’(x) is non-zero near x = a, there is an interval (a, b) such that g’(x) is
positive or negative for x € (a, b), and therefore, g(x) is either strictly increasing or
strictly decreasing on (a, b) (Figure 1). However, g(a) = 0, so g(x) itself is non-zero for
x € (a, b). Thus for all x € (a, b), the hypotheses of Cauchy’s Mean Value Theorem for
the interval [a, x] are satisfied and hence, there exists ¢ € (a, x) such that

f) = fl@) _ f'(©)
gx) —gla) g0

Since f(a) = g(a) = 0, this reduces to

f&) _ f'(©)
gx)  g'(o)

As x tends to a from the right, the value c¢ also tends to a from the right, and the desired
conclusion follows:

JF&x) i £l N A ()
im lim

x—a+ g(x) T xSa+t g'(c) - c—a+ g'(c) -

B CASE 2 Infinite Limits.
Now suppose that f(x) and g(x) are differentiable for x near (but not equal to) a and
satisfy

lim f(x)=+o00 and lim g(x) = +o0

x—a+ x—a+
‘We assume that

fo

m =
x—a+ g’ (x)



a x C b=a+s
FIGURE 2 We choose b so that (1) holds
for all x € (a, b)
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By the formal definition of right-hand limits, for every € > 0, there exists § > 0 such that

')
g'(x

L—e€< <L+4+e forall a<x<a+$

Set b = a + 6. Making & smaller if necessary, we may assume that f(x) and g(x)
are differentiable on (a, b), continuous on [a, b] and g(x) # 0 for x € (a, b). For every
x € (a, b), the hypotheses of Cauchy’s Mean Value Theorem are satisfied on (x, b), so
there exists ¢ in (x, b) such that (Figure 2)

O _ f0) - f®) _ 5~
§© " gb—g | 1oL

Multiplying by the denominator on the right, we rewrite this as follows

f'(© (1 3 g(b)) _f& B
g'(©) g(x) gx)  glx)

or

' fx (f(b) 3 f’(C)g(b))
g gx) glx) gegx)

call this r(x)

Denote the indicated quantity on the right-hand by r (x). In other words,

O G B
g'e)  gkx)
Now apply (1) with x = ¢:
L—e< & <L+4e€
g'(c)
Together with Eq. (2), we obtain
L—e+r(x)<%<L+e+r(x) forall x € (a, b) Iz]
X

Keep in mind that b depends on the choice of €. However, for fixed b, we claim that
r(x) tends to zero as x — a+. Indeed, the first term f(b)/g(x) tends to zero because
g(x) — oo. Similarly, the second term f/(c)g(b)/g’(c)g(x) tends to zero because g(x) —
oo and f’(c)/g’'(c) remains bounded by (3). Having thus shown that r(x) tends to zero,
we may choose §; > 0 such that |[r(x)| < € for all x € (a, a 4 §1). We may then apply
(4) to conclude that

L—2€<f((x))<L+2€ forall x € (a,a + 1)
glx

Since € is arbitrary, this suffices to prove that

fim 7% _
St g(x)

as desired. [ |
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M CASE 3 Limits as x — oo.

We shall prove L’Hopital’s Rule for limits as x — oo. The case x — —o0 is similar.
Thus we assume there exists a number b such that g’(x) # 0 for all x > b and that the
following limit exists:

L = lim F'@)
X—>00 g’(x)

We use the variable 7 = x ! to convert limits as x — 00 to one-sided limits as x — 0+.
Thus we have

I ree—1
ffo e

m = =
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By the Chain Rule,

LFe™hy _ —2f'e”h _ feth
[gGt~hHY  —t72g/¢7)  g'(t7!)

Therefore
e hy e
m ——— = lim —— =1L
>0+ [g(t~ D] =0+ g/t

Now we may apply L'Hopital’s for one-sided limits as ¢ — 0+ to reach the desired
conclusion:

—1 -1\
lim fx) . fa ) 5 [f )] _1I

= lim = lim =
x—00 g(x) 10+ gt~) =0+ [g— DY

Remark: In the statement and proof of L’Hopital’s Rule, we have assumed that the limit

L tim £
e g ()

is a finite limit. This assumption is not necessary: L’Hopital’s Rule remains valid if this
limit is infinite (i.e., L = +00). The above proofs may be easily modified to handle this
case. For example, suppose that L = oo. In Case 1 (g(a) = f(a) = 0), we showed (in
the notation of the proof) that

fx) _ f'(©)
glx) g0

Since ¢ — a+ asx — a+, theratio on the right tends to co as x — a+ and the conclusion
follows. Similarly, the proof in Case 2 is valid, but the role of € > 0 is replaced by an
arbitrarily large number M > 0. Instead of (1), we have, for all M, the existence of § > 0
such that

1)

— >

g'(x)
Instead of (4), we conclude that

fx)
g(x)

M foralla <x <a+3$.

> M +r(x) forall x € (a,b)
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where b = a + 8. Since r(x) — 0 as x — a+, there exists §; > 0 such that |r(x)| < %M
for x € (a, a + §1) and therefore

1
f® >—-M forallx € (a,a+ 6;)
glx) 2

f(x)

This proves that tends to oo as claimed.
g(x)




